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Abstract. People re-identification is a fundamental operation for any
multi-camera surveillance scenario. Until now, it has been performed by
exploiting primarily appearance cues, hypothesizing that the individuals
cannot change their clothes. In this paper, we relax this constraint by
presenting a set of 3D soft-biometric cues, being insensitive to appearance
variations, that are gathered using RGB-D technology. The joint use of
these characteristics provides encouraging performances on a benchmark
of 79 people, that have been captured in different days and with different
clothing. This promotes a novel research direction for the re-identification
community, supported also by the fact that a new brand of affordable
RGB-D cameras have recently invaded the worldwide market.
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1 Introduction

The task of person re-identification (re-id) consists in recognizing an individual
in different locations over a set of non-overlapping camera views. It represents
a fundamental task for heterogeneous video surveillance applications, especially
for modeling long-term activities inside large and structured environments, such
as airports, museums, shopping malls, etc. In most of the cases, re-id approaches
rely on appearance-based only techniques, in which it is assumed that individuals
do not change their clothing within the observation period [1–3]. This hypothesis
represents a very strong restriction, since it constraints re-id methods to be
applied under a limited temporal range (reasonably, in the order of minutes).

In this paper we remove this restriction, presenting a new approach of person
re-id that uses soft biometrics cues as features. In general, soft biometrics cues
have been exploited in different contexts, either to aid facial recognition [4], used
as features in security surveillance solutions [5, 6] or also for person recognition
under a bag of words policy [7]. In [4] soft biometrics cues are the size of limbs,
which were manually measured. The approaches in [5–7] are based on data com-
ing from 2D cameras and extract soft biometrics cues such as gender, ethnicity,
clothing, etc.
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At the best of our knowledge, 3D soft biometric features for re-identification
have been employed only in [4], but in that case the scenario is strongly super-
vised and needs a complete cooperation of the user to take manual measures. In
contrast, a viable soft biometrics system should mostly deal with subjects with-
out requiring strong collaboration from them, in order to extend its applicability
to more practical scenarios.

In our case, the cues are extracted from range data which are computed
using RGB-D cameras. Recently, novel RGB-D camera sensors as the Microsoft
Kinect and Asus Xtion PRO, both manufactured using the techniques developed
by PrimeSense [8], provided to the community a new method of acquiring depth
information in a fast and affordable way. This drove researchers to use RGB-D
cameras in different fields of applications, such as pose estimation [9] and object
recognition [10], to quote a few. In our opinion, re-id can be extended to novel
scenarios by exploiting this novel technology, allowing to overcome the constraint
of analyzing people that do not change their clothes.

In particular, our aim is to extract a set of features computed directly on the
range measurements given by the sensor. Such features are related to specific
anthropometric measurements computed automatically from the person body.
In more detail, we introduce two distinct subsets of features. The first subset
represents cues computed from the fitted skeleton to depth data i.e. the Euclidean
distance between selected body parts such as legs, arms and the overall height.
The second subset contains features computed on the surface given by the range
data. They come in the form of geodesic distances computed from a predefined
set of joints (e.g. from torso to right hip). This latest measure gives an indication
of the curvature (and, by approximation, of the size) of specific regions of the
body.

After analyzing the effectiveness of each feature separately and performing a
pruning stage aimed at removing not influent cues, we studied how such features
have to be weighted in order to maximize the re-identification performance. We
obtained encouraging re-id results on a pool of 79 people, acquired under different
times and across intervals of days. This promotes our approach and in general
the idea of performing re-id with 3D soft biometric cues extracted from RGB-D
cameras.

The remaining of the paper is organized as follows. Section 2 briefly presents
the re-identification literature. Section 3 details our approach followed by Sec-
tion 4 that shows experimental results. Finally, Section 5 concludes the paper,
envisaging some future perspectives.

2 State of the art

Most of the re-identification approaches build on appearance-based features [1,
11, 3] and this prevents from focusing on re-id scenarios where the clothing may
change. Few approaches constrain the re-id operative conditions by simplifying
the problem to temporal reasoning. They actually use the information on the
layout distribution of cameras and the temporal information in order to prune
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away some candidates in the gallery set [12].
The adoption of 3D body information in the re-identification problem was first
introduced by [13] where a coarse and rigid 3D body model was fitted to differ-
ent pedestrians. Given such 3D localization, the person silhouette can be related
given the different orientations of the body as viewed from different cameras.
Then, the registered data are used to perform appearance-based re-identification.
Differently, in our case we manage genuine soft biometric cues of a body which is
truly non-rigid and also disregarding an appearance based approach. Such pos-
sibility is given by nowadays technology that allows to extract reliable anatomic
cues from depth information provided by a range sensor.

In general, the methodological approach to re-identification can be divided
into two groups: learning-based and direct strategies. Learning based methods
split a re-id dataset into two sets: training and test [1, 3]. The training set is used
for learning features and strategies for combining features while the test dataset
is used for validation. Direct strategies [11] are simple feature extractors. Usually,
learning-based strategies are strongly time-consuming (considering the training
and testing steps), but more effective than direct ones. Under this taxonomy,
our proposal can be defined as a learning-based strategy.

3 Our approach

Our re-identification approach has two distinct phases. First, a particular sig-
nature is computed from the range data of each subject. Such signature is a
composition of several soft biometric cues extracted from the depth data ac-
quired with a RGB-D sensor. In the second phase, these signatures are matched
against the test subjects from the gallery set. A learning stage, computed be-
forehand, explains how each single feature has to be weighted when combined
with the others. A feature with high weight means that it is useful for obtaining
good re-identification performances.

3.1 First stage: signature extraction

The first step processes the data acquired from a RGB-D camera such as the
Kinect. In particular, this sensor uses a structured light based infrared patterns
[8] that illuminates the scene/objects. Thus the system obtains a depth map of
the scene by measuring the pattern distortion created by the 3D relief of the
object. When RGB-D cameras are used with the OpenNI framework [14], it
is possible to use the acquired depth map to segment & track human bodies,
estimate the human pose, and perform metric 3D scene reconstruction. In our
case, the information used is given by the segmented point-cloud of a person,
the positions of the fifteen body joints and the estimation of the floor plane.
Although the person depth map and pose are given by the OpenNI software
libraries, the segmentation of the floor required an initial pre-processing using
RANSAC to fit a plane to the ground. Additionally, a mesh was generated from
the person point cloud using the“Greedy Projection” method [15].
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Before focusing on the signature extraction, a preliminary study has been per-
formed by examining a set of 121 features on a dataset of 79 individuals, each
captured in 4 different days (see more information on the dataset in Sec. 4).
These features can be partitioned in two groups: the first contains the skeleton-
based features, i.e., those cues which are based on the exhaustive combination
of distances among joints, distances between the floor plane and all the possible
joints. The second group contains the Surface-based features, i.e., the geodesic
distances on the mesh surface computed from different joints pairs. In order
to determine the most relevant features, a feature selection stage evaluates the
performance on the re-identification task of each single cue, one at a time, in-
dependently. In particular, as a measure of the re-id accuracy, we evaluated the
normalized area under curve (nAUC) of the cumulative matching curve (CMC)
discarding those features which resulted equivalent to perform a random choice
of the correct match (see more information on these classification measures on
Sec. 4).

The results after such pruning stage was a set of 10 features:

– Skeleton-based features
• d1: Euclidean distance between floor and head
• d2: Ratio between torso and legs
• d3: Height estimate
• d4: Euclidean distance between floor and neck
• d5: Euclidean distance between neck and left shoulder
• d6: Euclidean distance between neck and right shoulder
• d7: Euclidean distance between torso center and right shoulder

– Surface-based features
• d8: Geodesic distance between torso center and left shoulder
• d9: Geodesic distance between torso center and left hip
• d10: Geodesic distance between torso center and right hip

Some of the features based on the distance from the floor are illustrated in Fig.
1 together with the joints localization on the body. In particular, the second
feature (ratio between torso and legs) is computed according to the following
equation:

d2 =
mean(d5 + d6)

mean(dfloorLhip + dfloorRhip)
· (d1)−1 (1)

The computation of the (approximated) geodesic distances, i.e., Torso to left
shoulder, torso to left hip and torso to right hip, is given by the following steps.
First, the selected joints pairs, which are normally not lying onto the point cloud,
are projected towards the respective closest points in depth. This generates a
starting and ending point on the surface where it is possible to initialize an A?

algorithm computing the minimum path over the point cloud (Fig. 2). Since
the torso is usually recovered by the RGB-D sensor with higher precision, the
computed geodesic features should be also reliable.

As a further check on the 10 selected features, we verified the accuracy by
manually measuring the features on a restricted set of subjects. At the end, we
found out that higher precision was captured especially in the features related to
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Fig. 1. Distances employed for building the soft-biometric features (in black), and some
of the soft biometric features (in green). It is important to notice that the joints are not
localized in the outskirt of the point-cloud, but, in most of the cases, in the proximities
of the real articulations of the human body.

Fig. 2. Geodesic features: the red line represents the path found by A? between torso
to left shoulder, torso to left hip and torso to right hip

the height (d1, ..., d4), while other features were slightly more noisy. In general,
all these features are well-suited for an indoor usage, in which people do not
wear heavy clothes that might hide the human body aspects.

3.2 Second stage: signature matching

This section illustrates how the selected features can be jointly employed in the
re-id problem. In the literature, a re-id technique is usually evaluated considering
two sets of personal ID signatures: a gallery set A and a probe set B.

The evaluation consists in associating each ID signature of the probe set B
to a corresponding ID signature in the gallery set A. For the sake of clarity, let
us suppose to have N different ID signatures (each one representing a different
individual, so N different individuals) in the probe set and the same occurs
in the gallery set. All the N subjects in the probe are present in the gallery.
For evaluating the performance of a re-id technique, the most used measure is
the Cumulative Matching Curve (CMC) [1], which models the mean probability
that whatever probe signature is correctly matched in the first T ranked gallery
individuals, where the ranking is given by evaluating the distances between ID
signatures in ascending order.
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In our case, each ID signature is composed by F features (in our case,
F = 10), and each feature has a numerical value. Let us then define the dis-
tance between corresponding features as the squared difference between them.
For each feature, we obtain a N × N distance matrix. However such matrix is
biased towards features with higher measured values leading to a problem of
heterogeneity of the measures. Thus, if a feature such as the height is measured,
it would count more w.r.t. other features whose range of values is more compact
(e.g. the distance between neck and left shoulder). To avoid this problem, we
normalize all the features to a zero mean and unitary variance. We use the data
from the gallery set to compute the mean value of each feature as well as the
feature variance.

Given the normalized N×N distance matrix, we now have to surrogate those
distances into a single distance matrix, obtaining thus a final CMC curve. The
naive way to integrate them out would be to just average the matrices. Instead,
we propose to utilize a weighted sum of the distance matrices. Let us define
the set of weight wi for i = 1, ..., F that represents the importance of the i−th
feature: the higher the weight, the more important is the feature. Since tuning
those weights is usually hard, we propose a quasi-exhaustive learning strategy,
i.e., we explore the weight space (from 0 to 1 with step 0.01) in order to select
the weights that maximize the nAUC score. In the experiments, we report the
values of those weights and compare this strategy with the average baseline.

4 Experiments

In this section, we describe first how we built the experimental dataset and how
we formalised the re-id protocol. Then, an extensive validation is carried forward
over the test dataset in different conditions.

4.1 Database creation

Our dataset is composed by four different groups of data. The first “Collabora-
tive” group has been obtained by recording 79 people with a frontal view, walking
slowly, avoiding occlusions and with stretched arms. This happened in an indoor
scenario, where the people were at least 2 meters away from the camera. This
scenario represents a collaborative setting, the only one that we considered in
these experiments. The second (“Walking”) and third (“Walking2”) groups of
data are composed by frontal recordings of the same 79 people walking normally
while entering the lab where they normally work. The fourth group (“Back-
wards”) is a back view recording of the people walking away from the lab. Since
all the acquisitions have been performed in different days, there is no guarantee
that visual aspects like clothing or accessories will be kept constant. Figure 3
shows the computed meshes from different people during the recording of the
four different sessions, together with some statistics about the collected features.
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Fig. 3. Illustration of the different groups in the recorded data, rows from top to
bottom: “Walking”, “Walking2”, “Backwards” and “Collaborative”. Note that people
changed their clothings during the acquisitions in different days. On the right, statistics
of the “Walking” dataset: for each feature, the histogram is shown; in the parenthesis,
its mean value (in cm, except d2) and standard deviation.

From each acquisition, a single frame was automatically selected for the com-
putation of the biometric features. This selection uses the frame with the best
confidence of tracked skeleton joints1, which is closest to the camera and it was
not cropped by the sensors fields of view. This represents the frame with the
highest joints tracking confidence which in most of the cases was approximately
2.5 meters away from the camera.

After that, the mesh for each subject was computed and the 10 soft biometric
cues have been extracted using both skeleton and geodesics information.

4.2 Semi-Cooperative re-id

Given the four datasets, we have built a semi-collaborative scenario, where the
gallery set was composed by the ID signatures of the “Collaborative” setting,
and the test data was the “Walking 2” set. The CMCs related to each feature are
portrayed in Fig. 4: they show how each feature is able to capture discriminative
information of the analyzed subjects. Fig. 5 shows the normalized AUC of each
features. Notice that the features associated to the height of the person are very
meaningful, as so the ratio between torso and legs.

1 Such confidence score is a byproduct of the skeleton fitting algorithm.
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Fig. 5. Area under the curve for each feature (the numbering here follows the features
enumeration presented in Sec. 3) —“Collaborative” VS “Walking 2”. The numbers
over the bars indicate the numerical nAUC values of the different features.

The results of Fig. 5 highlights that the nAUC over the different features
spans from 52.8% to 88.1%. Thus, all of them contributes to have better re-
identification results. To investigate how their combination helps in re-id, we
exploit the learning strategy proposed in Sec. 3.2. Such weights wi are learned
once using a different dataset than the one used during testing. The obtained
weights are: w1 = 0.24, w2 = 0.17, w3 = 0.18, w4 = 0.09, w5 = 0.02, w6 =
0.02, w7 = 0.03, w8 = 0.05, w9 = 0.08, w10 = 0.12. The weights mirrors the
nUAC obtained for each feature independently (Fig. 5): the most relevant ones
are d1 (Euclidean distance between floor and head), d2 (Ratio between torso
and legs), d3 (Height estimate), and d10 (Geodesic distance between torso center
and right hip). In Fig. 6, we compare this strategy with a baseline: the average
case where wi = 1/F for each i. It is clear that the learning strategy gives better
results (nAUC= 88.88%) with respect to the baseline (nAUC= 76.19%) and also
the best feature (nAUC= 88.10%) that correspods to d1 in Fig. 5. For the rest
of the experiments the learning strategy is adopted.

4.3 Non-Cooperative re-id

Non-cooperative scenarios consist of the “walking”, “walking2” and “backwards”
datasets. We generate different experiments by combining cooperative and non-
cooperative scenarios as gallery and probe sets. Table 1 reports the nAUC score
given the trials we carried out. The non-cooperative scenarios gave rise to higher
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Fig. 6. Compilation of final CMC curves —“Collaborative” - “Walking 2”

performances than the cooperative ones. The reason is that, in the collaborative
acquisition, people tended to move in a very unnatural and constrained way,
thus originating biased measurements towards a specific posture. In the non-
cooperative setting this did not clearly happen.

Gallery Probe nAUC

Collab. Walking 90.11 %

Collab. Walking 2 88.88 %

Collab. Backwards 85.64 %

Walking Walking 2 91.76 %

Walking Backwards 88.72%

Walking 2 Backwards 87.73 %

Table 1. nAUC scores for the different re-id scenarios.

5 Conclusions

In this paper, we presented a person re-identification approach which exploits
soft-biometrics features, extracted from range data, investigating collaborative
and non-collaborative settings. Each feature has a particular discriminative ex-
pressiveness with height and torso/legs ratio being the most informative cues.
Re-identification by 3D soft biometric information seems to be a very fruitful
research direction: other than the main advantage of a soft biometric policy, i.e.,
that of being to some extent invariant to clothing, many are the other reasons:
from one side, the availability of precise yet affordable RGB-D sensors encourage
the study of robust software solutions toward the creation of real surveillance
system. On the other side, the classical appearance-based re-id literature is char-
acterized by powerful learning approaches that can be easily embedded in the
3D situation. Our research will be focused on this last point, and on the creation
of a larger 3D non-collaborative dataset.
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