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ABSTRACT

Tracking groups of people is a highly informative task in surveil-
lance, and it represents a still open and little explored issue. In this
paper, we propose a brand new framework for group tracking, that
consists in two separate particle filters, one focusing on groups as
atomic entities (the multi-group tracker), and the other modeling
each individual separately (the multi-object tracker). The latter helps
the multi-group tracker in better defining the nature of a group, eval-
uating the membership of each individual with respect to different
groups, and allowing a robust management of the occlusions. The
coupling of the two processes is theoretically founded due to the re-
vision of the posterior distribution of the multi-group tracker with
the statistics accumulated by the multi-object tracker. Experimental
comparative results certify the goodness of the proposed technique.

Index Terms— Group Tracking, Multi-Target Tracking, Parti-
cle Filtering.

1. INTRODUCTION

Group tracking (GT) is of high interest for video surveillance pur-
poses as it allows fine scenario descriptions, addressing choral
actions that may lead to important threats, and highlighting social
bounds among individuals. At the same time, it represents a chal-
lenging issue, since a group of people is a highly structured entity
whose dynamics is complex, and whose appearance is erratic, due
to intra- and inter-group occlusions phenomena.

There have been few recent attempts to deal with GT problem.
In [1], a foreground segmentation method classifies the moving re-
gions in people and groups. In [2], a foreground subtraction-based
method models the object paths using a Bayesian network. A set
of empirical rules detect the groups. However, in those methods
intra- and inter-group dynamics are not considered. A set of empir-
ical merging and splitting rules embedded into a Kalman filter are
proposed in [3] to define the groups. However, the Kalman filter
is not able to deal with non-linear dynamics. In [4], a determinis-
tic mass-spring model interprets the result of a multi-object tracker,
joining objects sharing a common behavior. In [5], a lattice-based
Markov Random Field combined to a particle filter tracks groups as
near-regular textures. A method that tracks a group of highly cor-
related targets by employing an Markov Chain Monte Carlo particle
filter is proposed in [6]. However, the last two approaches deal with
very constrained intra-group dynamics because they assume a strong
correlation among the targets.

In this paper, we propose a novel way to track groups, namely
Collaborative Particle Filters (Co-PF). The underlying idea con-
sists in designing two tracking processes observing a scene under
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two different perspectives: a low-level, multi-object tracker (MOT)
performs tracking of multiple individuals, separately; a high-level,
multi-group tracker (MGT) focuses on groups, and uses the knowl-
edge acquired by the MOT to refine its estimations. Each process
consists in a Hybrid-Joint Separable (HJS) filter [7], that permits
to track multiple entities dealing with occlusions in a very effective
way.

The input given by the MOT flows to the MGT in a principled
way, i.e., revising the MGT posterior distribution by marginalizing
over the MOT’s state space. In this way, the MGT posterior is peaked
around group configurations formed by trusted individual estimates.
In practice, our framework permits to: i) track multiple groups; ii)
deal with intra- and iii) inter-group occlusions in a 3D calibrated con-
text. The latter two conditions have never been taken into account
jointly, and define a brand new operating context, where we put a
solid possible solution. Synthetic and real experiments validate our
intuition and encourage further developments for Co-PF.

The rest of the paper is organized as follows. In Sec. 2, we de-
scribe the mathematical background. In Sec.3, the proposed method
is described, and related experiments are presented in Sec.4. Fi-
nally, Sec. 5 concludes the paper, indicating the future work for this
promising approach.

2. MATHEMATICAL BACKGROUND

From a Bayesian perspective, the single object tracking problem
aims at recursively calculating the posterior distribution p(xt|z1:t)
by exploiting the Chapman-Kolmogorov equation, where xt is the
current state of the target, zt is the current measurement, and x1:t
and z1:t are the states and the measurements up to time t, respec-
tively. In formulae:

p(xt|z1:t) ∝ p(zt|xt)
∫
p(xt|xt−1)p(xt−1|z1:t−1)dxt−1 (1)

The equation is fully specified by an initial distribution p(x0|z0) =
p(x0), the dynamical model p(xt|xt−1), and the observation model
p(zt|xt). Particle filtering (PF) approximates the posterior distri-
bution by a set of N weighted particles, i.e., {(x(n)t , w

(n)
t )}Nn=1; a

large weight w(n)
t mirrors a state x(n)t with high posterior probabil-

ity. In this way, the integral in Eq. 1 has not to be analytically solved,
and, instead, the posterior at time t− 1 is sampled, defining a set of
state hypotheses (the particles) that evolve according to the dynam-
ical model p(xt|xt−1) (the prediction step), and which is evaluated
via p(zt|xt) (the observation step).

HJS filter [7] is an extension of the PF for multiple targets.
Defining xt = {x1t , x2t , . . . , xKt } the joint state (the ensemble of
all individual targets), HJS adopts the approximation p(xt|z1:t)≈∏
k p(x

k
t |z1:t), that is, the joint posterior could be approximated via

the product of its marginal components (k indexes the individual
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Fig. 1. Collaborative PF idea and group rendering.

targets). The dynamics and the observation models of HJS are ex-
pressed as follows:

p(xkt |xkt−1) =

∫
p(xt|xt−1)p(x¬kt−1|z1:t−1)dx¬kt−1:t (2)

p(zt|xkt ) =

∫
p(zt|xt)p(x¬kt |z1:t−1)dx¬kt (3)

where the apex ¬k addresses all the targets but the kth. These equa-
tions encode an intuitive strategy, i.e., that both the dynamics and
the observation phases of the kth target lie upon the consideration of
a joint dynamical model p(xt|xt−1) ≈ p(xt)

∏
k q(x

k
t |xkt−1) and

observation model p(zt|xt). The joint dynamical model, through
the prior p(xt), avoids that multiple targets with single motion de-
scribed by q(xkt |xkt−1) collapse in a single location, and the joint
observation model considers that the visual appearance of a single
target may be occluded by another object, acting as a z-buffer. The
two models are weighted by posterior distributions that essentially
promote trusted joint objects configurations (not considering the kth
object). For more details, readers may refer to [7].

3. COLLABORATIVE PARTICLE FILTER

Our framework is sketched in Fig. 1(a): the MOT tracks the indi-
viduals in the scene, whereas the MGT tracks groups of individuals.
Both the processes share the same observations, {zt}, and this high-
lights our key intuition: the two processes evaluate the scene under
two different points of view.

The MOT process is modeled by an HJS filter [7]. Each indi-
vidual state is modeled as an elliptical shape on the ground plane,
i.e., xkt = 〈µk,Σk〉, where µk is the position of the individual on
the ground plane1, Σk is a covariance that measures the occupancy
of the body projected on the ground plane (see [7] for more details).

The MGT process customizes the HJS filter for dealing with
groups, and incorporates a fusion component, accepting information
from the MOT. We denote the gth group as Xg = 〈µg,Σg〉, where
µg is the 2D position on the floor of the centroid of the gth group
and Σg is the covariance matrix that approximates the projection of
its shape on the floor. The choice of an ellipse for modeling the
floor projection of a group is motivated from a psycho-sociological
point of view, exploiting proxemics notions that describe a group as
a compact closed entity [8]. The posterior of the MGT of the gth
group follows the Bayesian recipe (Eq. 1), so that

p(Xg
t |z1:t) ∝ p(zt|X

g
t )

∫
p(Xg

t |X
g
t−1) p(Xg

t−1|z1:t−1) dXg
t−1.

(4)

1Please note that the ground plane position is inferred employing the cal-
ibration of the camera.

The dynamical model p(Xg
t |X

g
t−1) is derived as in Eq. 2, where

the joint dynamical model p(Xt|Xt−1) ≈ p(Xt)
∏
g q(X

g
t |X

g
t−1)

has Xt = {X1
t , X

2
t , . . . , X

G
t }, with G the number of groups in the

scene. In this case, the function q(Xg
t |X

g
t−1) is modeled by consid-

ering the nature of Xg
t = 〈µg,Σg〉. For the centroid µg , we assume

a linear motion, perturbed by white noise with parameter σµ. The
dynamics of the covariance matrix Σg is defined by a perturbation
of its principal axes, i.e., by varying its eigenvalues {λi}i=1,2 and
eigenvectors {vi}i=1,2. In particular, we rotate the principal axes by
an angle θ, by modifying the eigenvectors:

V ′ = [R(N (θ, σθ))v1, R(N (θ, σθ))v2] (5)

and then, we vary the amplitude of the principal axes by modifying
the eigenvalues as follows:

Λ′ =

[
N (λ1, σλ) 0

0 N (λ2, σλ)

]
(6)

whereR(·) is a rotation matrix and σθ and σλ are user-defined noise
variance values. The matrixes V ′ and Λ′ are then used to recom-
pose the new hypothesis Σ′ = V ′Λ′V ′

T , that will represent a new
perturbed elliptical shape.

The dynamics prior p(Xg
t ) implements an exclusion principle

[7] that cancels out some inconsistent particles. In other words, two
groups’ hypotheses, that are close and partially overlapped, will be
rejected. We employ a Markov Random Field learned via Belief
Propagation, where each node represents a group hypothesis and the
weight of each link is computed considering the overlapping area of
the two hypotheses.

The (single) observation model p(zt|Xg
t ) is derived from Eq.3,

where we have p(zt|Xt) as joint observation model. In order to eas-
ily evaluate an observation zt, we employ a rendering function that
maps a state in a convenient feature space2. The idea is depicted
in Fig. 1(b): when a new group is detected at time t in the scene 3,
its centroid µg and occupancy area Σg are robustly estimated, form-
ing the initial state Xg

t . The rendering function builds a volume of
height 1.80m upon the area Σg , in order to surround the people of
the group. From this volume, the projection ig (namely, the model of
Xg
t ) on the image plane is evaluated, and finally, the histogram hgi is

computed. This function permits to estimate novel state hypotheses
X ′

g
t : given its components 〈µ′g,Σ′g〉, the rendering function takes

the model ig deforming it opportunely (by a re-scaling, considering
the µ′g , and by a shearing, taking into account the deformation re-
sulted by the perturbation of the covariance matrix Σ′g). This brings
to a novel h′gi , which is compared with the observation estimated di-
rectly from the scene by the rendering function applied to 〈µ′g,Σ′g〉.
We use the Bhattacharyya distance as similarity measurement.

The joint observation model p(zt|Xt) considers all the groups
present in a scene, considering what part of the group Xg

t is seen
by taking into account the remaining groups X¬gt . This encodes
at the same time pro and cons of the observation model. Actually,
we assume a group as a rigid solid shape (the model ig), and this
permits to model inter-group occlusions, but it does not model intra-
group occlusions (i.e., persons of a group that mutually occlude each
other). This leads to tracking applications where a strong intra-group
occlusion causes the loss of that group.

Co-PF solves this problem, and permits a very fine estimation of
the whereabouts of a scene, making the group tracking very robust.

2This is analogue to what was done in [7] for the single individuals.
3Detection, split, and merge of groups are not considered here, because

the focus of this paper is mainly on the novel collaborative mechanism.



It basically injects the information collected by the MOT into the
MGT. Considering the filtering expression in Eq. 4, the fusion occurs
on the posterior at time t− 1:

p(Xg
t−1|z1:t−1) =

∫
p(Xg

t−1,xt−1|z1:t−1) dxt−1 (7)

=

∫
p(Xg

t−1|xt−1, z1:t−1) p(xt−1|z1:t−1) dxt−1 (8)

The first term of Eq. 8 is the core of our approach as it revises the
group posterior distribution at time t− 1, also considering the states
of the single individuals. In this way, the second term (the posterior
at time t − 1 of the MOT process) may be considered as a weight
that mirrors the reliability of the individual states.

A convenient way to model distributions conditioned on multi-
ple events is that of the Mixed-memory Markov Process (MMP) [9],
that decomposes a structured conditioned distribution as a convex
combination of pairwise conditioned distributions. This leads to:

p(Xg
t−1|xt−1, z1:t−1) ≈ α1p(X

g
t−1|xt−1) + α2p(X

g
t−1|z1:t−1),

(9)

where α1, α2 > 0 and α1 + α2 = 1. Considering Eq. 9, we can
rewrite Eq. 8 as:

p(Xg
t−1|z1:t−1) ≈

α1

∫
p(xt−1|z1:t−1) p(Xg

t−1|xt−1) dxt−1 + (10)

α2 p(X
g
t−1|z1:t−1)

∫
p(xt−1|z1:t−1) dxt−1︸ ︷︷ ︸

=1

. (11)

At this point, it is easy to realize that p(Xg
t−1|z1:t−1) becomes

a combination of the natural group posterior and a marginalization
of the linking probability p(Xg

t−1|xt−1), that relates a group to in-
dividuals, weighted by the MOT posterior. In other words, the group
posterior is revisited by injecting in a principled way the informa-
tion on the single targets (the MOT posterior), conveyed selectively
by p(Xg

t−1|xt−1). An example will demonstrate the advantage of
this formulation.

The linking probability p(Xg
t−1|xt−1) is factorized as an MMP

as follows:

p(Xg
t−1|xt−1) ≈

K∑
k=1

p(Xg
t−1|x

k
t−1)βk,g (12)

∝
K∑
k=1

p(xkt−1|Xg
t−1) p(Xg

t−1)βk,g (13)

where βk,g > 0 ∀k, g and
∑
k β

k,g = 1. Each term of the sum in
Eq. 12 represents the posterior probability that the gth group Xg

t−1

contains the kth target xkt−1.
In Eq. 13, the posterior is modeled employing the Bayes rule,

where p(xkt−1|Xg
t−1) defines the linking likelihood that each single

individual state xkt−1 is a subpart of Xg
t−1. Hence, we define a prob-

ability model based on three components: 1) appearance similarity,
2) dynamics consistency, and 3) group membership. The appear-
ance similarity is encoded by the Bhattacharyya distance between
the HSV histograms of the two entities: dHSV(Xg

t−1, x
k
t−1). The

dynamics consistency rewards the person state whose motion com-
ponent is similar to that of the group. In practice, we check the
2D displacement on the floor by calculating ddir(X

g
t−1, x

k
t−1) =
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Fig. 2. Statistics on the synthetic test set.

|1 − |dir(Xg
t−1) − dir(xkt−1)|/π|, where dir(·) gives the direction

(an angle) of the person or group. Finally, the group membership
evaluates the spatial proximity of the person state and of the group
state:

dmbr(X
g
t−1, x

k
t−1) =

{
1 if xkt−1 ∈ Xg

t−1

0 otherwise (14)

where the membership operator ∈ controls if the kth person posi-
tion is inside the gth group ellipse. Therefore, p(xkt−1|Xg

t−1) =

dHSV(Xg
t−1, x

k
t−1) · ddir(X

g
t−1, x

k
t−1) · dmbr(X

g
t−1, x

k
t−1). The coef-

ficients βk,g express a linking preference that an object belongs to a
group, and are left here as uniform, i.e., βk,g = 1/G.

Finally, the prior p(Xg
t−1) discards the biggest and the smallest

group hypotheses, rejecting the particles in which the size of the
group is below a threshold τb or above a threshold τa.

An example that explains the strength of our formulation can
be represented by an intra-group occlusion in the gth group at time
t − 1, which is very common due to the dynamical nature of a
group of moving people. Let xkt−1 a target of the group Xg

t−1 that
vanishes as occluded by the remaining individuals of that group.
The group posterior p(Xg

t−1|z1:t−1) will not be very high, for
the limits of the visual, rigid, group representation. However, the
MOT process, dealing with single objects and managing their occlu-
sions, will “understand” the fact that xkt−1 is occluded, producing
a high p(xkt−1|z1:t−1). This probability value will flow through
p(Xg

t−1|xt−1), which is high because, even if occluded, the posi-
tion and the velocity of xkt−1 are correctly estimated by the MOT
process, and will give a high linking likelihood. This will reinforce
the final estimation of the hybrid posterior forXg

t−1, thus permitting
to estimate the subsequent group sample set in a more correct way.

4. EXPERIMENTAL RESULTS

Our approach has been evaluated on synthetic data and publicly
available datasets (PETS 20064 and PETS 20095). We carried out a
comparative analysis wrt the MGT (without the proposed collabora-
tion stage), highlighting that Co-PF is more able to deal with intra-
and inter-group occlusion. Other approaches have not been taken
into account because of the lack of: 1) on-line available code for any
of the approaches in the state of the art 2) a shared, labelled, dataset.

The simulations on the synthetic test set6 are carried out, in order
to build statistics on ground-truthed sequences. The test set is built
to emulate the scenarios in PETS dataset by using the same back-
ground and the same calibration data. Each sequence contains static
images of people walking in the environment and forming groups.

4http://www.cvg.rdg.ac.uk/PETS2006/index.html
5http://www.pets2009.net
6The synthetic data are available under request to the authors.

http://www.cvg.rdg.ac.uk/PETS2006/index.html
http://www.pets2009.net
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Fig. 3. Comparison of MGT (first and third column) and Co-PF
(second and fourth column) on PETS 2006 and PETS 2009. The
second row compares the PF uncertainty [12] in the two experiments.

We artificially create a set of 26 sequences (13 for each dataset),
choosing two different points of view in order to deal with variably
scaled people: the first camera is closed to the people, while the sec-
ond one is far. The number of people and the number of groups vary
in different sequences from 3 to 20 and from 1 to 5, respectively.
The number of person in a group varies from 2 to 6. The parameters
are set as follows: σµ = 0.05, σλ = 0.05, σθ = π/40, 256 bin are
used for the HSV histogram, α1 = α2 = 0.5, τb = 0.5, τa = 2.5.

A comparison has been done between the Co-PF with N = 50
and Ng = 50 (the number of particles for each group) and MGT
with N ′g ≈ Ng + N · K2

G2·C , where C = 5 has been empirically
chosen, K and G are the number of people and groups, respectively.
In this way, the computational burden of the two methods is simi-
lar. To evaluate the performance on the synthetic test set, we adopt
the follow measures: Average Tracking Accuracy (ATA), Multiple
Object Tracking Accuracy (MOTA), Multiple Object Tracking Pre-
cision (MOTP), False Positive (FP), Multiple Objects (MO), False
Negative (FN), Tracking Success Rate (TSR) and so on (further de-
tails in [10, 11]). For each measure, a boxplot representation is given
[10], where the box is defined by the 1st quartile, median, and the 3rd
quartile; the extremities outside the box are the smallest and largest
value, and the ”+” is the mean value. The comparison (Fig. 2(a) and
Fig. 2(b)) shows that in the PETS2006 synthetic dataset our Co-PF
strongly outperforms the MGT in terms of all the measures. Even
though the PETS2009 sequences are slightly harder, Co-PF often
succeeds where MGT fails, yielding to higher performances.

Moreover, we perform the test on portions of the PETS datasets,
using the same settings. We consider sequences where the groups
were not subjected to splits or merges, in order to stress the capabil-
ity of tracking group entities with intra- and inter-group occlusions.
Initialization of groups has been done by fitting the µg and Σg to
the projections of the individuals new entries on the ground plane.

If lost, a group is manually reinitialized. We show here two repre-
sentative examples. In real scenarios, MGT is not able to deal com-
pletely with the intra- and inter-group dynamics (Fig. 3(a)). On the
other hand, Co-PF exploits the MOT results, enriching the posterior
knowledge given by the MGT (Fig. 3(b)).

To give further support to our Co-PF, we evaluate the uncertainty
of the particle filters [12]. Fig. 3(c) depicts that the MGT uncertainty
is peaked when an intra- and inter-group occlusion occurs. After the
occlusion the uncertainty is high because the track is erroneously lost
(two tracks on a single group). Fig. 3(d) shows a similar behavior of
Fig. 3(c), highlighting that the MGT looses the tracks several times.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we propose and extensively evaluate a collaborative
framework for group tracking. Two processes are involved: the
group process simplifies groups as atomic entities, dealing success-
fully with occluding, multiple groups. The individual process cap-
tures how individuals move, refining the estimations done by the
group process directly in the posterior distribution. In this way, the
group tracking process can evolve in a more robust way. Future di-
rections will focus on dealing with split and merge dynamics, which
are ignored here, but that can be easily embedded in our framework,
in a seamless way.
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