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Abstract

This work proposes a method to characterize the appearance of individuals exploiting body visual cues. The method is based
on a symmetry-driven appearance-based descriptor and a matching policy that allows to recognize an individual. The descriptor
encodes three complementary visual characteristics of the human appearance: the overall chromatic content, the spatial arrangement
of colors into stable regions, and the presence of recurrent local motifs with high entropy. The characteristics are extracted by
following symmetry and asymmetry perceptual principles, that allow to segregate meaningful body parts and to focus on the human
body only, pruning out the background clutter. The descriptor exploits the case where we have a single image of the individual, as
so as the eventuality that multiple pictures of the same identity are available, as in a tracking scenario. The descriptor is dubbed
Symmetry-Driven Accumulation of Local Features (SDALF). Our approach is applied to two different scenarios: re-identification
and multi-target tracking. In the former, we show the capabilities of SDALF in encoding peculiar aspects of an individual, focusing
on its robustness properties across dramatic low resolution images, in presence of occlusions and pose changes, and variations
of viewpoints and scene illumination. SDALF has been tested on various benchmark datasets, obtaining in general convincing
performances, and setting the state of the art in some cases. The latter scenario shows the benefits of using SDALF as observation
model for different trackers, boosting their performances under different respects on the CAVIAR dataset.
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1. Introduction

Characterizing humans in surveillance scenarios is a hard
task: most of the time people are captured by different low
resolution cameras, under occlusions conditions, badly illumi-
nated, and in different poses. The modeling problem becomes
even harder when human descriptions serve as ID signatures in
a recognition scenario. In this context, a robust modeling of
the entire body appearance of a person is mandatory, especially
when other classical biometric cues (face, gait) are not available
or difficult to catch, due to the sensors’ scarce resolution or low
frame-rate.

In this paper, we propose a method that exploits a novel de-
scriptor for characterizing human beings. Such method may
be cast naturally in the context of the re-identification, i.e., the
recognition of a “probe” individual in different locations over
cameras with non-overlapping fields of view, employing an op-
portune matching policy, that considers a large “gallery” set of
candidates. In addition, the descriptor can be exploited as ob-
ject model for tracking, and the matching policy in this case
serves to evaluate the model against a set of observations. The
idea is that at each frame a soft or probabilistic matching be-
tween a probe set (the person template) and the gallery set (the
tracking hypotheses or particles) is performed.

The descriptor is the core of our approach, and is dubbed
Symmetry-Driven Accumulation of Local Features (SDALF).
It works on a rectangular region in which a pedestrian has

been detected, and supposes that the pedestrian is in upright
pose (Fig. 1(a)). It represents a convenient trade-off between
the more complex pictorial structures for humans [2], and the
whole-body representation [3, 4] employed in many surveil-
lance methods. SDALF is a symmetry-based description of the
human body, and it was inspired by the fact that most natural
objects and phenomena manifest symmetry in some form, so
detecting and characterizing symmetry is a natural way to un-
derstand the structure of objects. To support this, the Gestalt
psychology school [5] considers symmetry as a fundamental
principle of perception: symmetrical elements are more likely
integrated into one coherent object than asymmetric regions.
This principle has been also largely exploited in Computer
Vision for characterizing salient parts of a structured object
[6, 7, 8, 9]. In SDALF, asymmetry principles allow to segre-
gate meaningful body parts (head, upper body, lower body),
whereas symmetry criteria help in extracting features from the
actual human body, pruning out distracting background clutter
(Fig. 1(b)). The idea is that features near the vertical axis of
symmetry are weighted more than those that are far from it,
ensuring to get information from the internal part of the body,
trusting less the peripheral portions. This perceptual part local-
ization is robust as it operates at dramatic low resolution (up
to 11 × 22), under pose, viewpoint, and illumination changes.
This promotes the use of SDALF for surveillance purposes.

Once body parts are localized, complementary aspects of
their appearance are extracted, highlighting: i) the global chro-
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Figure 1: Sketch of the proposed descriptor. (a) Given an image or a set of images, (b) SDALF localizes meaningful body parts. Then, complementary aspects of
the human body appearance are extracted: (c) weighted HSV histogram, represented here by its (weighted) back-projection (brighter pixels mean a more important
color), (d) Maximally Stable Color Regions [1] and (e) Recurrent Highly Structured Patches. The objective is to correctly match SDALF descriptors of the same
person (first column vs. sixth column).

matic content, by the HSV histogram (see Fig. 1(c)); ii) the
per-region color displacement, employing Maximally Stable
Colour Regions (MSCR) [1] (see Fig. 1(d)); iii) the presence
of Recurrent Highly Structured Patches (RHSP), estimated by
a novel per-patch similarity analysis (see Fig. 1(e)). Such cues
have been selected after a comparative analysis of a large set of
features, and each one is necessary to capture diverse aspects
of each person. Please note that the feature set can be easily
adapted to low-cost video surveillance systems, that are usually
characterized by acquisitions of a gray level streaming. The
HSV histogram can be replaced by the gray levels histograms,
the MSCR by the maximally stable extremal regions [10] and
the RHSP works also in the case of gray level images.

An important aspect of the proposed method is that it can
exploit the presence of multiple instances of the same individ-
ual for reinforcing its characterization. This occurs in several
surveillance scenarios: to quote a few, human operators may
employ Pan-Tilt-Zoom (PTZ) cameras to grab as many images
of a suspect as possible. Another example is when a tracker is
exploited, consecutive shots of individuals can be used in re-
vising thier object models against appearance changes. SDALF
takes into account these situations, collecting features from all
the available pictures of an individual, thus augmenting the ro-
bustness and the expressiveness of the description. After the
descriptor is created, our method adopts a simple distance min-
imization strategy to match a probe individual with a gallery
composed by multiple signatures.

We tested our method in two surveillance applications, i.e.
re-identification and tracking. For re-identification we con-
sider several standard public datasets: ViPER [11], iLIDS [12],
ETHZ [13] and CAVIAR4REID [14], setting in most of the
cases state-of-the-art performances. These datasets embed dif-

ferent challenges for the re-identification problem: pose, view-
point and lighting variations, and occlusions. Moreover, we
test the limit of SDALF by subsampling these dataset up to
dramatic resolutions (11 × 22 pixels). Exploiting SDALF as
an appearance model for the tracking, we consider the widely-
known CAVIAR [15] sequence dataset and diverse trackers. We
show that SDALF outperforms the classical object descriptors
considered in the literature, increasing the performances of dif-
ferent trackers.

This paper extends the work of [16], which was focused on
re-identification with a smaller experimental section. In this pa-
per, we fully detail the SDALF description and its experimental
validation introducing novel tests for the re-identification. In
addition, we promote SDALF as object model for multi-person
tracking.

The rest of the paper is organized as follows. In Sec. 2, the
state of the art of re-identification and tracking is described,
highlighting the differences of the existing methods with re-
spect to our strategy. Sec. 3 details the proposed descriptor, and
Sec. 4 and 5 report the use of SDALF for re-identification and
tracking, respectively. Several comparative results are reported
in Sec. 6, and, finally, conclusions and future perspectives are
discussed in Sec. 7.

2. Related Work

In this section, we review the state of the art of the re-
identification approaches, and we propose a short1 essay on the
different appearance model employed for tracking.

1Please note that a review of tracking methods is out of the scope of this
paper. Interested readers may refer to [17] for a good review.
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Single-shot Multiple-shot

Learning-based
[21, 22, 23, 24]

[25, 26, 27] [28]

Direct Methods
[14, 29]

Our Approach

[14, 30, 31, 32]
[33, 34, 35]

Our Approach

Table 1: Taxonomy of the existing re-identification methods.

Person Re-identification. Re-identification methods that rely
only on visual information are addressed here as appearance-
based techniques. Our approach lies in this category, so the
review will mainly focus on this class of methods. Other ap-
proaches assume easier and less general operative conditions,
for instance, adding temporal reasoning on the spatial layout of
the monitored environment, in order to prune away physically
impossible matches [18, 19, 20].

Appearance-based methods can be divided into two groups:
the learning-based methods and the direct methods (Table 1).
The former group is characterized by the use of a training
dataset of different individuals where the features and/or the
policy for combining them that ensures high re-identification
accuracies are analyzed [21, 22, 23, 24, 25, 26, 28, 27]. The
underlying assumption is that the knowledge extracted from the
training set could generalize to unseen examples. In [23], local
and global features are accumulated over time for each subject,
and fed into a multi-class SVM for recognition and pose es-
timation, employing different learning schemes. Viewpoint in-
variance is instead the main issue addressed by [25]: spatial and
color information are here combined using an ensemble of dis-
criminant localized features and classifiers selected by boost-
ing. In [24], pairwise dissimilarity profiles between individuals
are learned and adapted for a nearest neighbor classification.
Similarly, in [21], a high-dimensional signature composed by
texture, gradient and color information is projected into a low-
dimensional discriminant latent space by Partial Least Squares
(PLS) reduction. An “unconventional” approach is proposed
by [26], where the description of a person is enriched by con-
textual visual knowledge coming from the surrounding people
that form a group. The method implies that a group association
between two or more people holds in different locations of a
given environment, and exploits novel visual group descriptors,
embedding visual words into concentric spatial structures. Re-
identification is cast as a binary classification problem (one vs.
all) by [27] using Haar-like features and a part-based MPEG7
dominant color descriptor. In [22], the re-identification problem
is reformulated as a ranking problem and an informative sub-
space is learned where the potential true match is given highest
ranking. Ensemble RankSVM is proposed as ranking method,
reducing significantly the memory requirements.

It is worth noting that the learning-based approaches are
strongly dependent on the cardinality and the kind of training
set. Such approaches may suffer of generalization problems so
that they have to be frequently re-trained/updated, when facing
real scenarios (e.g., an airport), while the gallery set changes
quickly and consistently (e.g., new individuals entering into the
monitored area).

The other class of approaches, the direct methods, does not
consider training datasets but rather work on each person inde-
pendently [14, 30, 31, 29, 32, 33, 34], Those works are usually
focused on designing novel features for capturing the most dis-
tinguishing aspects of an individual. In [30], the bounding box
of a pedestrian is equally subdivided into ten horizontal stripes,
and the median HSL value is extracted in order to manage x-
axis pose variations. These values, accumulated over different
frames, generate a multiple signature. A spatio-temporal lo-
cal feature grouping and matching is proposed by [32], consid-
ering ten consecutive frames for each person, and estimating
a region-based segmented image. The same authors present
a more expressive model, building a decomposable triangu-
lated graph that captures the spatial distribution of the local
descriptions over time, so as to allow a more accurate match-
ing. In [31], the method consists in segmenting a pedestrian im-
age into regions, and registering their color spatial relationship
into a co-occurrence matrix. This technique proved to work
well when pedestrians are seen from small variations of the
point of view. In [33], the person re-identification scheme is
based on the matching of SURF [36] interest points collected
in several images during short video sequences. Covariance
features, originally employed for pedestrian detection [37], are
extracted from coarsely located body parts and tailored for re-
identification purposes in [29]. The work has been extended in
[35] by considering the case where multiple images of the same
individual are available. The authors adopt the manifold mean
as surrogate of the different covariances coming from the multi-
ple images. Similar features (i.e., MSCR and color histograms)
to the ones proposed in this work have been employed also in
[14]. The features are extracted from human parts estimated
using the pictorial structure detector [2].

Considering the features employed for re-identification, in
addition to color information which is universally adopted, sev-
eral other features of interest are textures [21, 22, 25], edges
[21], Haar-like features [27], interest points [32], image patches
[25], and segmented regions [31]. These features, when not
collected densely, can be extracted from horizontal stripes [30],
triangulated graphs [32], concentric rings [26], and localized
patches [29].

Another complementary taxonomy (Table 1) for the re-iden-
tification algorithms distinguishes the class of the single-shot
approaches from the class of multiple-shot methods. The for-
mer focuses on associating pairs of images for each individual,
while the latter employs multiple images of the same person as
probe and gallery elements.

These four paradigms of re-identification give rise to the tax-
onomy reported in Table 1. Looking at the table, it is worth not-
ing that direct single-shot approaches represent the case where
the least information is employed. For each individual, we
have a single image whose features are independently matched
against hundreds of candidates. The learning-based multi-shot
approaches, instead, deal with the highest amount of informa-
tion. Our approach lies in the class of the direct methods, and
is versatile, working both in the single and in the multi-shot
modality.

In general, learning-based approaches produce higher per-
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formances than the direct approaches. However, how stated be-
fore, they are not truly suited for a practical usage in surveil-
lance scenarios.

Person Tracking. Here, we focus the discussion on the features
for object representation commonly exploited in tracking. Such
representations should be robust to deal with the hard record-
ing conditions (e.g., low resolution and scarce illumination). In
addition, they have to be computationally efficient in order to
comply to the huge number of hypothesis a tracker should eval-
uates at each time step.

For this review, we follow the scheme proposed by [17], dis-
cussing first the data structures useful to represent objects, and
then specifying the most common features employed. Points
are the poorest object representation, which are suitable for
modelling targets that occupy small regions in an image with
little overlap. The object can be represented by a single point
(the centroid) [38], or a set of sparse points [39]. Covariance
matrices of elementary features have been recently adopted to
deal with non-rigid objects under different scales [40]. Geo-
metric shapes as rectangle or regular ellipses serve to primar-
ily model simple rigid objects affected by translation, affine,
or projective (homography) transformations [41]. Elementary
shapes may be employed to encode different body parts, such
as head, torso and legs [3, 42]. Patches may also be employed
to track salient parts of a target [43]. Contours are suitable for
tracking complex non-rigid shapes [44]. Articulated shapes are
represented as rigid body parts held together with joints, such
as the pictorial structures [45, 46, 2]. Such structures essentially
rely on two components, one capturing the local appearance of
body parts, and the other representing an articulated body struc-
ture. Inferring and detecting pictorial structures involve finding
the maximum-a-posteriori spatial configuration of the parts that
best fits with the image. Skeletal models [47, 48] can also be
extracted by considering the object silhouette, and can be used
to model both articulated and rigid objects.

There are many appearance features for objects and the most
employed are represented under the form of probability densi-
ties. They can be either parametric, such as Gaussian distri-
butions [49] or mixtures of Gaussians [50], or non-parametric,
such as Parzen windows [51] and histograms [4, 41]. The prob-
ability densities of object appearance features (color, texture)
can be computed from the image regions specified by the shape
models, i.e., the internal region of an ellipse, a box, or a con-
tour. Templates are formed using simple geometric shapes or
silhouettes that model the whole targets or a portion of them
[3, 42, 52, 53]. Their advantage is primarily due to the fact
that they carry both spatial and appearance information, how-
ever they can only encode the object appearance generated from
a single view. Thus, they are only suitable for tracking ob-
jects whose poses do not vary considerably during the course
of tracking. Active appearance models are generated by simul-
taneously modeling the object shape and appearance [54]. In
general, the object shape is defined by a set of landmarks, and
similar to the contour-based representation the landmarks can
reside on the object boundaries or inside the object region. For
each landmark, an appearance vector is stored which is in the

form of color, texture, or gradient magnitude. Active appear-
ance models require a training phase where both the shape and
its associated appearance is learned from a set of samples using,
for instance, principal component analysis [55]. The multi-view
appearance models encode different views of an object. One
approach to represent the different object views is to generate a
subspace from the given views. Subspace approaches such as
principal component analysis or independent component anal-
ysis have been used for both shape and appearance representa-
tions [56, 57].

It is worth noting that a weak appearance modeling of the
target is not the only cause of tracking failure. Tracking may
also fail when the object model is not properly updated [40,
55, 58, 59], or if a target becomes (even partially) occluded
[42, 60, 61, 62].

In this scenario, SDALF is used as appearance representation
for tracking. As data structure, we employ the bounding box
containing the target, using the symmetry and asymmetry axes
to obtain the segmentation of the body parts. As appearance
features for objects, we use the weighted histogram (Fig. 1(c))
and the MSCR (Fig. 1(d)) accumulated over time. Please note
that RHSP has not been considered for the tracking descriptor,
because in practice a system can afford the computation of the
RHSP only when dealing with single images (such as the person
re-identification task). Instead, since we use particle filtering
methods, RHSP has to be computed for each hypothesis, and
therefore there is a computational issue in doing this.

3. The SDALF Descriptor

Once an individual has been detected and segregated within
a bounding box in one or more frames, the SDALF descriptor
can be assembled. The nature of this process is slightly different
depending on the modality we are considering, i.e., single- or
multiple-shot. The building process of SDALF consists of three
phases:

1. Background subtraction separates the pixels of the individ-
ual (foreground) from the rest of the image (background);

2. Symmetry-based silhouette partition individuates percep-
tually salient body portions;

3. Symmetry-driven accumulation of local features composes
the signature as an ensemble of features extracted from the
body parts.

In the following, each step is described and analyzed focusing
on the differences between single-shot and multi-shot modality.

3.1. Background subtraction

The aim of this phase is to separate the genuine body appear-
ance from the rest of the scene. This allows the descriptor to fo-
cus solely on the individual, disregarding the context in which it
is immersed. We suppose that in a real scenario, a person can be
captured at completely different locations, like the arrival hall
of an airport, and in the parking lot. In the case of a sequence of
consecutive images, the object/scene classification may be op-
erated by a whatsoever background subtraction strategy. In the
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case of a single image, the separation is performed by Stel Com-
ponent Analysis (SCA) [63]. SCA lies on the notion of “struc-
ture element” (stel), which can be intended as an image portion
(often discontinuous) whose topology is consistent over an im-
age class. This means that in a set of given objects (faces or
pedestrian images), a stel individuates the same part over all the
instances (e.g., the hair in a set of faces, the body in a set of im-
ages each one containing a single pedestrian). In other words,
an image can be seen as a segmentation, where each segment is
a stel. SCA enriches the stel concept as it captures the common
structure of an image class by blending together multiple stels:
it assumes that each pixel measurement xi, with its 2D coordi-
nate i, has an associated discrete variable si, which takes a label
from the set {1, . . . , S }. Such a labeling is generated from K stel
priors pk(si), which capture the common structure of the set of
images. The model detects the image self-similarity within a
segment: the pixels with the same label s are expected to follow
a tight distribution over the image measurements. Instead of the
local appearance similarity, the model insists on consistent seg-
mentation via the stel prior. Each component k represents a
characteristic (pose or spatial configuration) of the object class
at hand, and other poses are obtained through blending these
components. We set S = 2 (i.e., foreground/background) and
K = 2, modeling the distribution over the image measurements
as a mixture of Gaussians as we want to capture segments with
multiple color modes within them. SCA is learnt beforehand
on a generic person database not considering the experimental
data, and the segmentation over new samples consists in a fast
inference. Each Expectation-Maximization iteration of the in-
ference algorithm takes in average 18 milliseconds2 when deal-
ing with images of size 48×128. In our experiments, we set the
number of iterations to 100: this for being sure that the learning
process reached a local minima of the likelihood function. In
practice, we saw that 10-20 iterations are enough in most of the
cases.

3.2. Symmetry-based silhouette partition

Background subtraction is used to extract the foreground pix-
els and also to subdivide the human body into salient parts,
exploiting asymmetry and symmetry principles. Considering
a pedestrian acquired at very low resolution (see Fig. 3), it is
easy to note that the most distinguishable parts are three: head,
torso and legs. Focusing on such parts is thus reasonable, and
their detection can be exploited observing natural asymmetry
properties in the human appearance. In addition, the relevance
of head, torso and legs as salient regions for human character-
ization also emerged from the boosting approach proposed by
[25].

Let us define the chromatic bilateral operator as:

C(i, δ) ∝
∑

B[i−δ,i+δ]

d2 (pi, p̂i) (1)

2We used the authors’ MATLAB code [63] on a quad-core Intel Xeon
E5440, 2.83 GHz with 4 GB of RAM.
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Figure 2: Silhouette Partition: first the asymmetrical axis iT L is extracted, then
iHT ; afterwards, for each region Rk , k = {1, 2} region the symmetrical axis jLRk
are computed.

where d(·, ·) is the Euclidean distance, evaluated between HSV
pixel values3 pi, p̂i, located symmetrically with respect to the
horizontal axis at height i. The sum is over B[i−δ,i+δ], that is
the foreground region lying in the box of width J and vertical
extension 2δ + 1 around i as depicted in Fig. 2. The value of δ
is experimetally set to I/4, where I is the image height.

Let us also introduce the spatial covering operator, that cal-
culates the difference of foreground areas for two regions:

S (i, δ) =
1
Jδ

∣∣∣A (
B[i−δ,i]

)
− A

(
B[i,i+δ]

)∣∣∣ , (2)

where A (b) is a function that computes the foreground area in
a given box b and J is the image width.

Combining opportunely the two operators C and S enables us
to find the axes of symmetry and asymmetry. To locate the hor-
izontal asymmetry axes, we want to maximize the difference in
appearance and the similarity between foreground areas. There-
fore, the main x-axis of asymmetry (usually the torso-legs axis)
is located at height iT L by solving the following problem:

iT L = argmin
i

(1 −C(i, δ)) + S (i, δ). (3)

The values of C are normalized by the numbers of pixels in
the region B[i−δ,i+δ]. The search for iT L holds in the interval
[δ, I − δ]: iT L usually separates the two biggest body portions
characterized by different colors (corresponding to t-shirt/pants
or suit/legs, for example).

The other x-axis of asymmetry (usually the shoulders-head
axis) is positioned at height iHT . The goal is to find a local
grandient variation in the foreground area:

iHT = argmin
i

(−S (i, δ)) . (4)

The search for iHT is limited in the interval [δ, iT L − δ].
Once computed iHT and iT L, three regions of interest are iso-

lated Rk, k = {0, 1, 2}, approximately corresponding to head,
body and legs, respectively. For re-identification purposes,
it is common to discard the information of the head/face re-
gion because standard biometric algorithms usually fail at low
resolution. Therefore, here R0 is discarded. For each part

3In case of gray level videos, replacing HSV values with gray levels is
straightforward.
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Figure 3: Images of individuals at different resolutions (from 64 × 128 to 11 × 22) and examples of foreground segmentation and symmetry-based partitions.

Rk, k = {1, 2}, a (vertical) symmetry axis is estimated, in order
to localize the areas that most probably belong to the human
body, i.e., pixels near the symmetry axis. In this way, the risk
of considering background clutter is minimized.

To this end, both the chromatic and spatial covering operator
are used on both R1 and R2. The y-axes of symmetry jLRk, (k =

1, 2) are obtained as follows:

jLRk = argmin
j

C( j, δ) + S ( j, δ). (5)

C is evaluated on the foreground region of size the height of Rk

and width δ (see Fig. 2). The goal is to search for regions with
similar appearance and area. In this case, δ is proportional to
the image width, and it is fixed to J/4.

Some results of the optimization process applied to images
at different resolutions are shown in Fig. 3. As one can ob-
serve, our subdivision segregates correspondent portions inde-
pendently on the assumed pose and the adopted resolution.

3.3. Symmetry-driven Accumulation of Local Features

The SDALF descriptor is computed by extracting features
from each part R1 and R2. The goal is to distill as much comple-
mentary aspects as possible in order to encode heterogeneous
information, so capturing distinctive characteristics of the indi-
viduals. Each feature is extracted by taking into account its dis-
tance with respect to the jLRk axes. The basic idea is that loca-
tions far from the symmetry axis belong to the background with
higher probability. Therefore, features coming from that areas
have to be a) weighted accordingly or b) discarded. Depending
on the considered features, one of these two mechanisms will
be applied.

There are many possible cues useful for a fine visual char-
acterization. Considering the previous literature in human ap-
pearance modeling, features may be grouped by considering the
kind of information to focus on, that is, chromatic (histograms),
region-based (blobs), and edge-based (contours, textures) infor-
mation. SDALF considers a feature for each aspect.

Weighted Color Histograms. The chromatic content of each
part of the pedestrian is encoded by color histograms. We
evaluate different color spaces, namely, HSV, RGB, normal-
ized RGB (where each channel is normalized by the sum of
all the channels), per-channel normalized RGB [29], CIELAB.
Among these, HSV has shown to be superior and also allows a
intuitive quantization against different environmental illumina-
tion conditions and camera acquisition settings.

Therefore, we build weighted histograms, so taking into con-
sideration the distance to jLRk axes. In particular, each pixel is
weighted by a one-dimensional Gaussian kernelN(µ, σ), where
µ is the y-coordinate of jLRk, and σ is a priori set to J/4. The
nearer a pixel to jLRk, the more important. In the single-shot
case, a single histogram for each part is built. Instead, in the
multiple-shot case, N histograms for each part are considered,
where N is the number of images for each pedestrian. Then, the
matching policy will handle these multiple histograms properly
(see Sec. 4).

Maximally Stable Color Regions (MSCR). The MSCR opera-
tor4 [1] detects a set of blob regions by looking at successive
steps of an agglomerative clustering of image pixels. At each

4We used the author’s implementation, downloadable at http://www2.
cvl.isy.liu.se/~perfo/software/.

6



step, neighboring pixels with similar color are clustered, con-
sidering a threshold that represents the maximal chromatic dis-
tance between colors. Those regions that are stable over a range
of steps constitute the maximally stable color regions of the im-
age. The descriptor of each region is a 9-dimentional vector
containing area, centroid, second moment matrix and average
RGB color. MSCR exhibits desirable properties for matching
useful also in re-indeitification: covariance to adjacency pre-
serving transformations and invariance to scale changes and
affine transformations of image color intensities. Moreover,
they show high repeatability, i.e., given two views of an object,
MSCRs are likely to occur in the same correspondent locations.

In the single-shot case, MSCRs are extracted separately from
each part of the pedestrian. To discard outliers, MSCRs that
do not lie inside the foreground regions are ruled out. In the
multiple-shot case, MSCRs from multiple images have to be
oppurtunely accumulated. To this end, a mixture of Gaussian
clustering procedure [64] that automatically selects the num-
ber of components is utilized. Clustering is carried out using
the 5-dimensional MSCR sub-pattern composed by the centroid
and the average RGB color of each blob. We cluster the blobs
similar in appearance and position, since they yield redundant
information. This phase helps in discarding redundant informa-
tion, and keeping low the computational cost during matching
because only the representants of each cluster are used. The de-
scriptor is then a set of 4-dimensional MSCR sub-pattern: the y
coordinate and the average RGB color of each blob. x coordi-
nates are discarded because they are strongly dependent on the
pose and viewpoint variation.

Recurrent High-Structured Patches (RHSP). We design this
feature taking inspiration from the image epitome [65]. The
idea is to extract image patches that are highly recurrent in the
human body figure (see Fig. 4). Differently from the epitome,
we want to take into account patches 1) that are informative (in
an information theoretic sense, i.e., carrying out high entropy
values), and 2) that can be affected by rigid transformations.
The first constraint selects only those patches with strong ed-
geness, such as textures. The second requirement takes into
account that the human body is a 3D entity whose parts may be
captured with distortions, depending on the pose. Since the im-
ages have low resolution, we can approximate the human body
with a vertical cylinder. In these conditions, the RHSP genera-
tion consists in three phases.

The first step consists in the random extraction of patches
p of size J/6 × I/6, independently on each foreground body
part of the pedestrian. In order to take the vertical symmetry
into consideration, we mainly sample the patches around the
jLRk axes. Thus, a Gaussian kernel centered in jLRk is used
similarly to the color histograms computation. The patches that
do not underline structure (e.g., uniformly colors) are removed
by thresholding on the entropy values of the patches. The patch
entropy is computed as the sum Hp of the pixel entropy of each
RGB channel. We choose those patches with Hp higher than a
fixed threshold τH ( = 13 in all our experiments). In the second
step, a set of transformations Ti, i = 1, 2, . . . ,NT are applyed
on the generic patch p, for all the sampled p’s in order to check

High-entropy 
patches

Transformed 
patches LNCC maps Merging and 

Thresholding

Clustering

Figure 4: Recurrent high-structured patches extraction. The final result of this
process is a set of patches (in this case only one) characterizing each body part
of the pedestrian.

their invariance to (small) body rotations. We thus generate a
set of NT simulated patches pi, gathering an enlarged set p̂ =

{p1, . . . , pNT , p}.
In the third and final phase, only the most recurrent patches

are kept. We evaluate the Local Normalized Cross-Correlation
(LNCC) of each patch in p̂ with respect to the original image.
All the NT + 1 LNCC maps are then summed together forming
an average map. Averaging again over the elements of the map
indicates how much a patch, and its transformed versions, is
present in the image. Thresholding this value does select the
RHSP patches. As threshold, we fix τµ = 0.4.

The RHSPs is computed for each region R1 and R2, and the
descriptor consists again of an HSV histogram of them. The
multi-shot case differs from the single-shot case from the fact
that the candidate RHSP descriptors are accumulated over dif-
ferent frames.

Please note that, even if we have several thresholds that reg-
ulate the feature extraction, they have been fixed once, and left
unchanged in all the experiments. The best values have been
selected by qualitatively analyzing the results on the VIPeR
dataset.

4. SDALF for Re-identification

In re-identification, two sets of pedestrian images are avail-
able: the gallery set A (the database of signatures whose label
is known) and the probe set B (the set of tracked pedestrians
without label). Re-identification consists in matching each sig-
nature in the set B, IB to the corresponding signature of the
set A, IA. The association mechanism depends on how the two
sets are organized, more specifically, on how many pictures are
present for each individual. This gives rise to three matching
philosophies: 1) single-shot vs single-shot (SvsS), if each im-
age in a set represents a different individual; 2) multiple-shot
vs single-shot (MvsS), if each image in B represents a different
individual, while in A each person is portrayed in different im-
ages, or instances; 3) multiple-shot vs multiple-shot (MvsM),
if both A and B contain multiple instances per individual. The
MvsM philosophy is preferred when trajectories of people are
available, because one can exploit the redundancy and diversity
of the data to make the signature more robust.

Re-identification can be seen as a maximum log-likelihood
estimation problem [34]. More in details, given a probe B the
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matching is carried out by:

A∗ = arg max
A

(
log P(IA|IB)

)
= arg min

A
(d(IA, IB))

During testing, we want to match the given probe signature
IB against the gallery set signatures IA. The goal is to opti-
mize the likelihood of IA given the probe IB. The right-hand
term of the formula is given by the fact that, in this work,
we define the matching probability P(IA|IB) in a Gibbs form
P(IA|IB) = e−d(IA,IB) and d(IA, IB) measures the distance between
two descriptors. The SDALF matching distance d is defined as
a convex combination of the local features:

d(IA, IB) = βWH · dWH(WH(IA),WH(IB))+ (6)
βMSCR · dMSCR(MSCR(IA),MSCR(IB))+ (7)
βRHSP · dRHSP(RHSP(IA),RHSP(IB)) (8)

where the WH(·), MSCR(·), and RHSP(·) are the weighted his-
tograms, MSCR, and Recurrent High-Structured Patch descrip-
tors, respectively, and βs are normalized weights.

The distance dWH considers the weighted color histograms.
In the SvsS case, the HSV histograms of each part are concate-
nated channel by channel, then normalized, and finally com-
pared via Bhattacharyya distance [66]. Under the MvsM and
MvsS policies, we compare each possible pair of histograms
contained in the different signatures, keeping the lowest dis-
tance.

For dMSCR, in the SvsS case, we estimate the minimum dis-
tance of each MSCR element b in IB to each element a in IA.
This distance is defined by two components: dab

y , that compares
the y component of the MSCR centroids; the x component is
ignored, in order to be invariant with respect to body rotations.
The second component is dab

c , that compares the MSCR color.
In both cases, the comparison is carried out using the Euclidean
distance. The two components are combined as:

dMSCR =
∑
b∈IB

min
a∈IA

γ · dab
y + (1 − γ) · dab

c (9)

where γ takes values between 0 and 1. In the multi-shot cases,
the set IA of Eq. 9 becomes a subset of blobs contained in the
most similar cluster to the MSCR element b.

The distance dRHSP is obtained by selecting the best pair of
RHSP, one in IA and one in IB, and evaluating the minimum
Bhattacharyya distance among the RHSP’s HSV histograms.
This is done independently for each body part (excluding the
head), summing up all the distances achieved and then normal-
izing for the number of pairs.

In our experiments, we fix the values of the parameters as
follows: βWH = 0.4, βMSCR = 0.4, βRHSP = 0.2 and γ = 0.4.
These values have been estimated once with cross-validation
using a subset of 100 image pairs of the VIPeR dataset and left
unchanged for all the experiments.

4.1. Detecting new instances

The literature of re-identification does not take into account
the case where an individual IB is not already in the gallery set.

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5: Bimodal distribution of distances. The correct matching distances and
the wrong matching distances are depicted by the green and the red histogram,
respectively. These curves have been computed for the ETHZ, MvsM N=2
experiment, discussed in Sec. 6.

In a real re-identification setting, this is a very frequent scenario
where new people enters the scene for the first time ever.

We address this issue by observing the distances of correct
matches and the distances of wrong matches. Experimentally,
we have found out that these distances follow the bimodal dis-
tribution of Fig. 5, where the correct matching distances and the
wrong matching distances are depicted by the green (on the left)
and the red bars (on the right), respectively. By simply fitting
two Gaussian distribution on the distances data, we are able to
distinguish between correct matches and wrong matches. This
means that given the minimum distance d(IA∗ , IB) between the
best matching IA∗ and IB, if d(IA∗ , IB) is associated to the mode
of “wrong” distances (Fig. 5 on the right), the individual is not
in the gallery set. If d(IA∗ , IB) is associated to the other mode
(Fig. 5 on the left), re-identification is performed. Instead of
manually choosing a threshold, that may has to be changed for
different scenarios, the likelihood ratio of the two Gaussian can
be exploited. We estimate the parameters µ1, σ1, µ2, σ2 of the
two Gaussians (N(µ1, σ1) for the mode of “correct” distances
andN(µ2, σ2) for the mode of the “wrong” distances) in a train-
ing phase, shown in Fig. 5. At testing time, given a distance d if
N(d;µ1,σ1)
N(d;µ2,σ2) >= 1 there is re-identification, otherwise we identify
a new individual.

5. SDALF for Tracking

In tracking, a set of hypotheses of the object position on the
image is analyzed at each frame, in order to find the one which
best fits with the target appearance, usually called the template.
The paradigm is different to the classical re-identification: the
gallery set is now the hypothesis set, which is different for each
target. In addition, it may contain background clutter (hypothe-
ses that explore the scene) and it is not ensured that the exact
correspondence will be present (for example, because of occlu-
sions). The goal is thus to perform a soft matching, i.e., com-
pute the likelihood between the probe set (the target template)
and the gallery set (the hypothesis set) without performing any
ranking.

In this section, we briefly describe particle filtering for track-
ing (Sec. 5.1) and we exploit SDALF as appearance model
(Sec. 5.2).
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5.1. Particle Filter
Particle Filter offers a probabilistic framework for recur-

sive dynamic state estimation [67] that fits with the tracking
problem. The goal is to determine the posterior distribution
p(xt |z1:t), where xt is the current state, zt is the current measure-
ment, and x1:t and z1:t are the states and the measurements up
to time t, respectively. The Bayesian formulation of p(xt |z1:t)
enable us to rewrite the problem as:

p(xt |z1:t) ∝ p(zt |xt)
∫

xt−1

p(xt |xt−1)p(xt−1|z1:t−1)dxt−1. (10)

Particle Filter is fully specified by an initial distribution
p(x0), a dynamical model p(xt |xt−1), and an observation
model p(zt |xt). The posterior distribution at previous time
p(xt−1|z1:t−1) is approximated by a set of S weighted particles,
i.e. {(x(s)

t−1,w
(s)
t−1)}Ss=1, because the integral in Eq. 10 is often ana-

lytically intractable. Equation 10 can be rewritten by its Monte
Carlo approximation:

p(xt |z1:t) ≈
S∑

s=1

w(s)
t δ(xt − x(s)

t ). (11)

where

w(s)
t ∝ w(s)

t−1

p(zt |x
(s)
t ) p(x(s)

t |x
(s)
t−1)

q(x(s)
t |x

(s)
t−1, zt)

(12)

where q is called proposal distribution.

5.2. SDALF as Observation Model
The basic idea is to propose a new observation model

p(zt |x
(s)
t ) so that the object representation is made up by the

SDALF descriptor. We define the observation model re-
considering Eq. 6: p(zt |x

(s)
t ) = P(IA|IB), where this time IB is

the object template made by SDALF descriptors, and IA is the
current hypothesis x(s)

t . In this case, we do not perform mini-
mization like in Eq. 6, but the probability distribution over the
hypotheses is kept in order to approximate Eq. 10.

Some semplifications are required when embedding SDALF
into the proposed tracking framework. Since the descriptor has
to be extracted for each hypothesis x(s)

t , it should be reason-
ably efficient to compute. In our current implementation, the
computation of RHSP for each particle is not feasible as the
transformations Ti performed on the original patches to make
the descriptor invariant to rigid transformations constitute a too
high burden. We performed some preliminar experiments in-
cluding the RHSP, but it turned out that the small improvement
in accuracy that it gives is not worth the price in terms of com-
putations that we have to pay. Further evidence is given by the
weight we estimated for re-identification (βRHSP = 0.2). It high-
lights that the RHSP gives a small contribution with respect to
the other features. For these reasons, the RHSP is drop out from
the descriptor for tracking.

The observation model becomes:

p(zt |x
(s)
t ) = e−D(x(s)

t (zt),τt) (13)

D(x(s)
t (zt), τt) = βWH · dWH(WH(x(s)

t ),WH(τt))

+ βMSCR · dMSCR(MSCR(x(s)
t ),MSCR(τt))

where x(s)
t is the hypothesis extracted from the image zt, and τt

is the template of the object. During tracking, the object tem-
plate has to be updated in order to model the different aspects of
the captured object (for example, due to different poses). There-
fore, τt is composed by a set of images accumulated over time
(previous L frames). Then, in order to balance the number of
images employed for building the model and the computational
effort required, N = 3 images are randomly selected at each
time step to form IA.

The computation of the observation model of Eq. 13 consists
in evaluating the distances of the hypotheses {x(s)

t } against IB, as
dictated by the MvsS strategy in the re-identification. In other
words, we have a gallery set of S images (the hyphotheses), and
a multi-shot signature as probe.

6. Experimental Results

This section shows the evaluation of our approach in the
two main applications discussed so far: re-identification and
tracking. In the former case, an accurate comparative analy-
sis is carried out considering six public datasets and the most
widely-adopted re-identification protocols. In case of tracking,
we compare different object models applied to a standard par-
ticle filtering approach, analyzing how SDALF performs in a
general tracking framework. Moreover, we consider a state-of-
the-art tracker, Predator [68], demonstrating how SDALF can
be embedded to obtain new best results.

6.1. Person re-identification
We take into account six different public datasets, VIPeR

[11], iLIDS for re-id [12], ETHZ 1, 2, and 3 [13],
CAVIAR4REID [14]. Each one covers different aspects and
challenges for the person re-identification problem5. We also
create a scenario where the pedestrian images are tiny (up to
11 × 22).

All the results are shown in terms of recognition rate by
the Cumulative Matching Characteristic (CMC) curve, as com-
monly performed in the literature, and the normalized Area Un-
der Curve (nAUC) score for the CMC curve [34]. The CMC
curve is a plot of the recognition performance vs the rank-
ing score and represents the expectation of finding the correct
match in the top n matches. On the other hand, nAUC gives an
overall score of how well a re-identification method does per-
form. The parameters’ values are fixed for all the experiments
unless stated. The parameters are either estimated in a cross-
validation phase (e.g., βs) or by a qualitative analysis (e.g., the
RHSP thresholds) as described in Sec. 3. To obtain better re-
sults they could have been optimized for each dataset, but we
preferred to fix them to have a more general re-identification
setting.

5A video that shows examples of re-identification by SDALF can be found
at http://www.youtube.com/watch?v=3U5Aacyg-No.
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SDALF, s=1 (92.24)

SDALF, s=3/4 (90.53)

SDALF, s=1/2 (90.01)

SDALF, s=1/3 (88.47)

SDALF, s=1/4 (86.78)

(a) 316 ped. (b) 474 ped. (c) scale, 316 ped.

Figure 6: Performances on the VIPeR dataset in terms of CMC and nAUC (within brackets). In (a) and (b), comparative profiles of SDALF and other methods (ELF
[25] and PRSVM [22]) on 316 pedestrian dataset and 474 pedestrian dataset, respectively. In (c), comparison of SDALF at different scales.

VIPeR Dataset [11, 69]. This dataset [69] contains two views
of 632 pedestrians. Each pair is made up of images of the same
pedestrian taken from different cameras, under different view-
points, poses and lighting conditions. All images are normal-
ized to 48 × 128 pixels. Most of the examples contains a view-
point change of 90 degrees. Each pair is randomly split into two
sets: CamA and Cam B. Considering images from Cam B as the
gallery set, and images from Cam A as the probe set, each im-
age of the probe set is matched with the images of the gallery.
This provides a ranking for every image in the gallery with re-
spect to the probe. Ideally rank 1 should be assigned only to the
correct pair matches.

As competitors, we take into account the Primal-based
RankSVM (PRSVM) [22], and the Ensemble of Localized Fea-
tures (ELF) approach [25], following its commonly-used exper-
imental protocol: the dataset is split randomly into a training
and a test set, and the matching is performed. This procedure
is repeated several times for the sake of crossvalidation (5 for
PRSVM, 10 for ELF), averaging the obtained CMC curves. It is
worth noting that in our case we discard the training data, since
SDALF is a direct re-identification method and does not need
any training stage. In particular, we report the performances
using a test set of 316 and 474 pedestrians, respectively (see
Fig. 6; ). The nAUC score for each method is provided within
brackets in the legend of the plots of Fig. 6. Considering the ex-
periment on 316 test pedestrians (Fig. 6(a)), we also compute a
modified version of SDALF, in which the features have been ex-
tracted directly from the whole human body without any parti-
tion driven by asymmetry/symmetry principia, and without any
weighting. The method is named Accumulation of Local Fea-
tures (ALF), and it is useful for highlighting the importance of
focusing on separate parts of the human body and considering
the internal regions of the parts more reliable.

Many considerations could be drawn. First of all, SDALF
outperforms ELF in terms of nAUC, and we obtain comparable
results with respect to PRSVM (less than 0.12%). Moreover,
SDALF slightly outperforms PRSVM in the first positions of
the CMC curve (rank 1−6). This clearly shows the effectiveness
of the SDALF descriptor: without knowing beforehand how the

appearance information is transferred across different cameras
(this is actually studied by the learning methods), it is still able
to capture discriminant appearance traits. Finally, it is easy to
notice that the use of the symmetry axes increase the results of
5 − 10% of the CMC, considering the ALF curve.

Fig. 6(b) shows a comparison between PRSVM and SDALF
when dealing with a larger test dataset (474 individuals, as done
in the PRSVM paper). In this case, our approach outperforms
PRSVM of about 2.15%, in terms of nAUC. This reconfirms
that the performances of PRSVM, now lower than the previous
experiment, strictly depend on the training set (158 individuals
in this case) while the performances of SDALF remain similar.

The most considerable source of error for SDALF derives
from the illumination that in some cases tend to saturate the
colors so that many individual look very similar, and to the se-
vere lighting changes across the two views.

The last test on this dataset consists on analyzing the ro-
bustness of SDALF when the image resolution decreases.
We scaled the original images of the VIPeR by factors s =

{1, 3/4, 1/2, 1/3, 1/4} reaching a minimum resolution of 12×32
pixels (Fig. 3 on the right column). The results, depicted in
Fig. 6, show that the performance decreases with the scale, as
expected, but not drastically. nAUC is between 92.24% at scale
1 and 86.78% at scale 1/4.

iLIDS Dataset [12]. The iLIDS Multiple-Camera Tracking
Scenario repository is a videosequence dataset captured at an
airport arrival hall at the rush hour, exploiting a multi-camera
CCTV network. An excerpt of 479 images of 119 pedestri-
ans was extracted from these videos for testing a context-based
pedestrian re-identification method [26]. The images, normal-
ized to 64 × 128 pixels, derive from non-overlapping cameras,
under quite large illumination changes and subject to occlusions
(not present in VIPeR). Since there are more than two examples
for each pedestrian, we can evaluate both single- and multiple-
shot cases.

Regarding the single-shot case, we take into account the Spa-
tial Covariance Region (SCR) approach [29], and the context-
based method of [26], adopting also its testing protocol. We
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Figure 7: Performances on iLIDS dataset. (a) CMC curves comparing Context-based re-id [26], SCR [29], single-shot SDALF and ALF. (b) Analysis of SDALF
performances at different resolution. (c) CMC curves for MvsS and MvsM cases varying the average number of images N for each pedestrian.

also report the performances of ALF. We randomly select one
image for each pedestrian to build the gallery set, while the
other images form the probe set. Then, the matching between
probe and gallery set is estimated. For each image in the probe
set the position of the correct match is obtained. The whole
procedure is repeated 10 times, and the average CMC curves
is displayed in Fig. 7. SDALF outperforms the Context-based
method [26] without using any additional information about
the context (Fig. 7(a)) even using images at lower resolution
(Fig. 7(b)). As expected, ALF is undoubtedly less performing
than SDALF.

The experiments of Fig. 7(b) show the perfor-
mances of our approach when scaling factors are
s = {1, 3/4, 1/2,1/3, 1/4, 1/6} with respect to the original
size of the images, reaching a minimum resolution of 11 × 22
pixels. Fig. 7(a) shows that we get lower performances with
respect to SCR [29]. Unfortunately, it has been applied solely
to the iLIDS datasets, so that its performances cannot be
generalized in a consistent way. In particular, an interest-
ing challenge would be that of working on extremely low
resolutions, as in the CAVIAR4REID benchmark. The SCR
approach uses covariances of features which are computed on
localized patches. At a very low resolution this would mean
computing second order statistics on very few values, that
could be uninformative and subjected to dimensionality issues.

Concerning the multiple-shot case, we run experiments on
both the Multiple vs Single (MvsS) and the Multiple vs Mul-
tiple (MvsM) paradigms. In the former situation, we build a
gallery set of multi-shot signatures and we match it with a probe
set composed by one-shot signatures. In the latter, both gallery
and probe sets are made up of multi-shot signatures. In both
cases, the multiple-shot signatures are built from N images of
the same pedestrian, randomly selected. Since the dataset con-
tains an average of about 4 images per pedestrian, we tested our
algorithm with N = {2, 3} for MvsS, and just N = 2 for MvsM
running 100 independent trials for each case. It is worth noting
that some of the pedestrians have less than 4 images: therefore,
in such a case, we simply build a multi-shot signature composed
by less instances. Intuitively, in the MvsS situation, this policy

applies to the gallery signature only; in the MvsM signature,
we start by decreasing the number of instances that compose
the probe signature, leaving unchanged the number of elements
that build the gallery signature; once we reach just one instance
for the probe signature, we start decreasing the elements of the
gallery signature too. The results, depicted in Fig. 7(c), show
that in the MvsS case just 2 images are enough to increment
the performances of about 10% and to outperform the Context-
based method [26]. Adding another image gives an increment
of 20% with respect to the single-shot case. It is interesting to
note that the results for MvsM lie below the MvsS (N=3) curve.
This is probably due to the fact that a signature with 3 images
captures more heterogeneous aspects, encoding the information
exhibited by the fourth test image.

ETHZ Dataset [13, 70]. This repository [70] is formed by im-
ages captured from a moving camera, and it has been used orig-
inally for pedestrian detection. [21] extracted a set of samples
for each different person in the videos, and use the resulting set
of images to test their PLS method. The moving camera setup
provides a range of variations in people’s appearance. Though,
variation in pose is relatively small in comparison with the other
two datasets. The most challenging aspects of ETHZ are the il-
lumination changes and the occlusions, other than the low reso-
lution: all images are normalized to 32× 64 pixels. The dataset
is structured as follows: Seq. #1 contains 83 pedestrians, for a
total of 4.857 images; Seq. #2 contains 35 pedestrians, for a to-
tal of 1.936 images; Seq. #3 contains 28 pedestrians, for a total
of 1.762 images.

In the single-shot case, the experiments are carried out ex-
actly as for iLIDS. The multiple-shot case is performed consid-
ering N = 2, 5, 10 for MvsS and MvsM, with 100 independent
trials for each case. Since the images of the same pedestrian
come from video sequences, many are very similar and picking
them for building the multi-shot signature would not provide
new useful information about the subject. Therefore, we apply
beforehand a clustering algorithm [64] on the original frames,
based on their HSV histograms: this way, consecutive similar
frames would end up in the same cluster. At this point, we
select randomly one frame from each cluster and use them as
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Figure 8: Performances on the ETHZ dataset. Left column, results on Seq. #1; middle column, on Seq. #2; right column, on Seq. #3. We compare our method with
the results of PLS [21]. On the top row, we report the results for single-shot and MvsS SDALF; on the bottom row, we report the results for MvsM SDALF.

keyframes for the multi-shot signature. Then, the gallery and
probe sets are built like the MvsM in iLIDS considering the
selected keyframes.

The results for both single- and multiple-shot cases for
Seq. #1 are reported on Fig. 8, and we compare the results with
those reported by [21]. In Seq. #1 we do not obtain the best re-
sults in the single-shot case, but adding more information to the
signature we can get up to 86% rank 1 correct matches for MvsS
and up to 90% for MvsM. We think that the difference with PLS
is due to the fact that PLS uses all foreground and background
information, while we use only the foreground. Background
information helps here because each pedestrian is framed and
tracked in the same location, but it is not valid in general in a
multicamera setting. In addition, PLS requires to have all the
gallery signatures beforehand in order to estimate the weights
on the appearance model. So, if one pedestrian is added the
weights must be recomputed , weakening its effectiveness in
real scenarios.

In Seq. #2 (Fig. 8) we note a similar behavior: rank 1 cor-
rect matches can be obtained in 91% of the cases for MvsS, and
in 92% of the cases for MvsM. The results for Seq. #3 show
instead that SDALF outperforms PLS even in the single-shot
case. The best performances as to rank 1 correct matches is
98% for MvsS and 94% for MvsM. It is worth noting that there
is a point after that adding more information does not enrich the
descriptive power of the signature any more. N = 5 seems to
be a good trade-off between accuracy and computational per-
formance.

CAVIAR4REID Dataset [14]. The CAVIAR4REID dataset
contains images of pedestrians extracted from CAVIAR repos-
itory [15]. It is composed by 72 pedestrians with 10 images for
each of them, for two camera views. For this reason, it is more
interesting than the ETHZ, where images are extracted from a
single camera. The other challenging features of this dataset
are: a broad change in the image resolution, with a minimum
and maximum size of 17 × 39 and 72 × 144, respectively; pose
variations are severe, as so as the illumination changes and the
occlusions.

Fig. 9 reports the results of SDALF with a single image (left),
and under the multi-shot policy (right). The results show that
in a more realistic scenario the results are much worse - nAUC
is around 70% in the single-shot case. (C)PS [14] outperforms
SDALF in this dataset especially in the multi-shot setting. This
is expected because 1) (C)PS uses features similar to SDALF
and 2) it relies on a finer description of the human body using
the pictorial structures instead of just segment the body in 3
parts. Those results prove again that having a good body seg-
mentation is essential for re-identification. In the multi-shot
case, SDALF performs comparably with MRCG [35]6.

6.2. Tracking
As benchmark, we adopt CAVIAR [15], as it represents a

challenging real tracking scenario, due to pose, resolution and

6We thank the authors of [35] for providing us the results of their algorithm
on CAVIAR4REID.
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Figure 9: Performances of the single-shot descriptor (on the left) and the multi-shot descriptor (on the right) on the CAVIAR4REID dataset comparing SDALF,
(C)PS [14] and MRCG [35].

illumination changes, and severe occlusions. The dataset con-
sists of several ground-truthed sequences captured in the en-
trance lobby of the INRIA Labs and in a shopping center in
Lisbon. We select the shopping center scenario, because it mir-
rors a real situation where people move in the scene. The shop-
ping center dataset is composed by 26 sequences recorded from
two different points of view, at the resolution of 384 × 288 pix-
els. It includes individuals walking alone, meeting with others,
window shopping, entering and exiting shops.

As first experiment, we want to show the capabilities of
SDALF as appearance descriptor in a multi-person tracking
case. We use the particle filtering approach described in Sec. 5,
since it represents a general tracking engine employed by many
algorithms. As proposal distribution, we use the offline-trained
person detector [71] in the same way exploited by the Boosted
Particle Filter [53]. For generating new tracks, weak tracks
(tracks initialized for each not associated detection) are kept
in memory, and it is checked whether they are supported con-
tinuously by a certain amount of detections. If this happens, the
tracks are initialized [72].

The proposed SDALF-based observation model is compared
against two classical appearance descriptors for tracking: joint
HSV histogram and part-based HSV histogram (partHSV) [3]
where each of three body parts (head, torso, legs) are described
by a color histogram.

The quantitative evaluation of the descriptors is provided by
adopting the metrics proposed by [73], that consist of:

• False Positives (FP): An estimate exists that is not associ-
ated with a ground truth object;

• False Negatives (FN): A ground truth object exists that is
not associated with an estimate;

The single-frame values are averaged over time for estimating
an overall statistics. In addition, we provide also an evaluation
in terms of:

• the number of tracks estimated by our method (# Est.)
vs. the number of tracks in the ground truth (# GT): an

estimate of how many tracks are wrongly generated (for
example, because weak appearance models cause tracks
drifting).

Finally, we adopt metrics that take in account also the temporal
coherence of the estimated trajectories [74]7:

• Average Tracking Accuracy (ATA): measure that penal-
izes fragmentation phenomena in both the temporal and
spatial dimensions, while accounting for the number of ob-
jects detected and tracked, missed objects, and false posi-
tives;

• Multi-Object Tracking Precision (MOTP): considers the
spatiotemporal overlap between the reference tracks and
the tracks produced by the test method.

• Multi-Object Tracking Accuracy (MOTA): considers
missed detections, false positives, and ID switches by an-
alyzing consecutive frames.

For more details, please refer to the original paper [74].
The overall tracking results averaged over all the sequences

are reported in Table 2. Our approach is better in terms of
FP, which means that tracking is performed with higher accu-
racy (e.g., not too large bounding boxes), and in terms of FN,
that is, it is less probable to lose targets. The number of es-
timated tracks using SDALF are closer to the correct number
than partHSV and HSV. Experimentally, we noted that HSV
and partHSV fail very frequently in the case of illumination,
pose, and resolution changes and partial occlusions. In addi-
tion, several tracks are frequently lost and then re-initialized.

Considering the temporal consistency of the tracks (ATA,
MOTA, and MOTP), wa can notice that SDALF outperforms
HSV and partHSV in all the metrics. The values of ATA are not
so high, because track fragmentation is frequent. This is due
to the fact that the tracking algorithm does not explicitly cope

7For the sake of fairness, we use the code provided by the authors. For the
metric ATA, we use the association threshold suggested by the authors (0.5).
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Figure 10: Qualitative comparison between the descriptors on the sequence OneLeaveShop2cor (top-left), OneLeaveShopReenter1cor (top-right), ShopAssis-
tant1cor (bottom-left) and OneShopOneWait1cor (bottom-right). Those sequences poses the problem of multi-target tracking when dealing with resolution, pose,
illumination and resolution changes and occlusions.

with complete occlusions. ATA shows that SDALF gives the
best results. This experiment promotes SDALF as an accurate
person descriptor for tracking, able to manage the natural noisy
evolution of the appearance of people.

FP FN # Est. # GT ATA MOTP MOTA
SDALF 0.0608 0.1852 300 235 0.4567 0.7182 0.6331
partHSV 0.2094 0.4145 522 235 0.1812 0.5822 0.5585
HSV 0.2364 0.3858 462 235 0.1969 0.5862 0.5899

Table 2: Quantitative comparison between object descriptors: SDALF, part-
based HSV histogram and HSV histogram; the performances are given in terms
of False Positives (FP), False Negatives (FN), the number of tracks estimated
(# Est.) vs. the number of tracks in the ground truth (# GT), Multi-Object
Tracking Precision (MOTP) and Multi-Object Tracking Accuracy (MOTA).

A qualitative analysis that highlights the performances dis-
cussed above is provided in Fig. 10 and the videos reported
at http://www.youtube.com/watch?v=JiW2unf5gwg. In
particular, the sequence of Fig. 10 (top-left) shows the prob-
lem of single-target tracking when dealing with illumination
and resolution changes. HSV (third row) and partHSV his-
tograms (second row) are not able to deal properly with these
problems even if the sequence is quite simple (no occlusions,
simple background, only one target) resulting in many target
misses: three times for partHSV and two times for HSV (if the

target is lost in a particular frame, it is reinitialized the next
frames). Conversely, our approach follows the target for the
whole sequence without any track hijacking. In Fig. 10 (top-
right), tracking becomes more challenging, because the appear-
ance model has to face pose changes and partial occlusions. As
in the previous figure, HSV and partHSV lose the track several
times. SDALF outperforms the competitors, and shows to be
robust to partial occlusions.

A similar behavior is reported in the results of Fig. 10 (bot-
tom). When dealing with pose, illumination and resolution
changes and partial occlusions, SDALF outperforms the HSV
and partHSV descriptors in terms of less misses and higher ac-
curacy.

In terms of computational speed, we evaluate how long takes
the computation of Eq. 138. Two steps are required: first, the
SDALF descriptor for the current hypothesis is extracted, sec-
ond, the distances on Eq. 13 are computed. The first and sec-
ond phase take in average 18 and 15 milliseconds, respectively,
when the hypothesis has size 12 × 36. When the hypothesis in-
creases his size to 40 × 46, these phases take in average 26 and
24 milliseconds, respectively. Let S be the number of particles,
N the number of images and K the average number of targets

8The following values have been computed using our non-optimized MAT-
LAB code on a quad-core Intel Xeon E5440, 2.83 GHz with 4 GB of RAM.
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Figure 11: Comparison between Predator (blue), Predator with SDALF (red) and Predator with joint HSV histogram (green) on EnterExitCrossingPaths1cor. The
goal is to track the person on the left.

Sequence. Frames prSDALF prHSV Predator
EnterExitCrossingPaths1cor 1-300 4.48 (3.10) 12.95 (9.39) 7.82 (13.59)
OneLeaveShopReenter2cor 1-500 8.00 (5.82) 14.37 (12.75) 26.73 (21.86)
OneStopMoveNoEnter2cor 401-1000 12.17 (8.89) 48.39 (66.18) 44.91 (53.98)

Average − 8.22 (5.94) 25.24 (29.44) 26.49 (29.81)

Table 3: Error on three representative sequences comparing Predator with
SDALF, Predator with joint HSV histogram and Predator.

(N = 3 and S = 100 in our experiments), then the computa-
tional complexity of Eq. 13 is O(K · S · N). HSV and partHSV
have the only difference that they are computed only for a sin-
gle instance, therefore N is dropped out. Moreover, it is worth
noting that SDALF has an additional component to extract, that
is the MSCR descriptor, and this brings in an additional cost.

The last test we carry out is to evaluate the SDALF observa-
tion model embedded into a state-of-the-art tracker, that is, the
well-known Predator [68]. The general aim is to see if SDALF
might be adopted by novel trackers, hoping for an amelioration
of their performances due to our person modeling. We already
showed that using a generic particle filter, so this test should be
considered as an additional confirmation of our thesis.

Strictly speaking, Predator combines a non-parametric
single-object tracker that estimates the target position using op-
tical flow and a detector that is specifically trained to detect
the particular target. We want to check how much SDALF
can improve its performances, focusing on heterogeneous se-
quences where occlusions happen at some point. For this rea-
son, three different samples (EnterExitCrossingPaths1cor, One-
LeaveShopReenter2cor, OneStopMoveNoEnter2cor) have been
selected from CAVIAR. The goal is to track a single person dur-
ing its presence in the scene.

We thus modify the Predator prediction part as a cross-
correlation phase. The algorithm generates different hypotheses
around the target (in space and scale). Then the target template
is compared with those hypotheses in the same way described
by Eq. 13. The hypothesis that maximizes Eq. 13 is chosen as
the target estimate. As in the original algorithm, a single track
is manually initialized at the first frame.

In Table 3, we reported the error measures of the original

Predator, Predator with SDALF (prSDALF) and also Predator
with joint HSV histogram9 (prHSV) that works in similar way
of SDALF. The results are given in terms of mean distance be-
tween the ground truth and the tracker estimates, and standard
deviation. The “frame” column in the table indicates the ini-
tial and final frame of the person that has been considered in
the experiment. The mean error and its standard deviation of
prSDALF are considerably lower than the results of the other
competitors.

Moreover, we report a detailed analysis on a particular se-
quence (EnterExitCrossingPaths1cor): two people are walking
together and an occlusion occurs. The distances between the es-
timate and the ground truth over the time are shown in Fig. 11.
While comparing Predator with prSDALF, it is easy to notice
that in case of occlusion (frames 95-125) Predator drifts away
from the target and it takes more time to realize that the target
is lost. Instead, prSDALF after the occlusion is immediately
able to recover the target. The approach prHSV is not so good,
because in the first frames it gets confused between the two peo-
ple that are walking one next to each other and the error is also
high after the occlusion. To summarize the results in the other
sequences, when we do not have occlusions or drastic changes
of illumination/pose, the performances of prSDALF and Preda-
tor are comparable. When the situation becomes hard, SDALF
gives a substantial improvement.

7. Conclusions

In this paper, we introduced a novel robust descriptor charac-
terizing the human appearance, SDALF. SDALF is able to cap-
ture discriminant appearance information of individuals inde-
pendently from many factors, as pose, resolution, illumination
changes, occlusions, and in general clutter. The descriptor has
been tested extensively in two open issues for computer vision,
re-identification and tracking. SDALF consists in the robust
detection of human parts, driven by asymmetry/symmetry prin-
ciples. After that, three complementary kinds of features are

9partHSV is not used because it has already been proved to perform compa-
rably to HSV.
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extracted, focusing on different perceptual aspect of the human
appearance. In particular, chromatic and structural information,
as well as recurrent high-entropy textural characteristics are dis-
tilled from the human body. When multiple images of the same
person are available for the characterization, SDALF accumu-
late the features into a unique descriptor, encoding as much in-
formation as possible.

In the re-identification case, SDALF is used as a sim-
ple feature extractor, making it well-suited for the direct ap-
proaches, where minimization techniques are employed to rank
the gallery candidates. In the tracking case, SDALF comes
along with a matching strategy, providing thus an observation
model that can be embedded into many tracking paradigms. In
both the scenarios SDALF offers convincing results, that pro-
mote it a basic tool for researchers dealing with the human ap-
pearance.

As future works, for re-identification SDALF may be em-
bedded into the learning strategies, for improving the already
good performances such approaches do provide. For tracking,
SDALF should be optimized and parallelized to reach real-time
performances, in order to be embedded into industrial products
and approach the market.
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