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Abstract
In this paper, we address the task of tracking groups of

people in surveillance scenarios. This is a major challenge
in computer vision, since groups are structured entities,
subjected to repeated split and merge events. Our solution
is a joint individual-group tracking framework, inspired by
a recent technique dubbed decentralized particle filtering.
The proposed strategy factorizes the joint individual-group
state space in two dependent subspaces where individuals
and groups share the knowledge of the joint individual-
group distribution. In practice, we establish a tight relation
of mutual support between the modeling of individuals and
that of groups, promoting the idea that groups are better
tracked if individuals are considered, and viceversa. Exten-
sive experiments on a published and novel dataset validate
our intuition, opening up to many future developments.

1. Introduction
Group tracking consists in following tight formations of

individuals while they are walking or interacting (Fig. 1).
This recent open challenge is important in many respects: in
computer vision and signal processing, it may help in locat-
ing individual targets in the case of missing measurements
[21, 22]; in surveillance, it may reveal social bonds between
people, owing to a high-level scene awareness [6, 7] or in-
crease re-identification rates [27].

In general, one of the major difficulties of group track-
ing lies in the high variability of the group entity: splitting,
merging, initialization and deletion are frequent events that
characterize the life of a group, and that are usually mod-
eled by heuristic rules, yielding to a scarce generalization.
In addition, public tracking benchmarks supplied with se-
rious split and merge episodes are rare in the community,
proving the early age of this research topic.

This paper offers an elegant yet effective solution for the
group tracking: the idea is to perform, at the same time,
tracking of individuals and groups, that is, joint individual-
group tracking. This is made possible by a decentralized
policy of filtering [5], that factorizes the joint individual-

Figure 1: Group tracking results (colored convex hulls) of
the proposed Friends meet dataset (first row) and of BIWI
dataset (second row) [22].

group state space in two conditionally dependent subspaces,
so that it is possible to model 1) the single individuals, and
2) the groups given the knowledge of the individuals. We
dubbed our proposal as DEEPER-JIGT: DEcentralizEd Par-
ticle filtER for Joint Individual-Group Tracking.

Many interesting qualities can be ascribed to DEEPER-
JIGT. First of all, the absence of heuristics to handle group
events: they are all governed by probability distributions
whose parameters can be learned from training data. More-
over, DEEPER-JIGT updates the group information in an
online fashion, where the tracking history of the individuals
is intrinsically exploited by its composite filtering mecha-
nism. This is in contrast with the widely adopted individual-
based analysis methods, where groups are estimated by
grouping together short individual trajectories (tracklets)
collected beforehand, whose length is typically a critical pa-
rameter to be tuned [19, 8, 17, 22, 26, 4, 11]. Finally and
more important, DEEPER-JIGT allows to understand in a
quantitative way how much the modeling of the single tar-
gets helps the group tracking and viceversa, suggesting that
a joint treatment is beneficial for both worlds.

Our proposal has been evaluated on both simulated and
real scenarios, providing also a novel benchmark dataset,
named Friends Meet, where different groups pops out,
break out, enter and exit from the scene. To this end, since
group tracking evaluation measures do not exist, the exist-
ing individual tracking measures [24, 2] have been adapted
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here to handle groups.
The rest of the paper is organized as follows. In Sec. 2, a

novel taxonomy illustrates the literature on group tracking.
The overview of the decentralized particle filter in Sec. 3
introduces our contribution, that is then detailed in Sec. 4.
A thorough experimental section is reported in Sec. 5, and,
finally, Sec. 6 concludes the paper and envisages the future
work.

2. Related work
The recent but large literature on group analysis can be

partitioned in three categories: 1) the group-based class of
techniques where groups are treated as genuine atomic en-
tities without the support of individual tracks statistics [25,
10, 12, 15, 16]; 2) the individual-based class, where group
descriptions are built by associating individuals tracklets
that have been calculated beforehand (typically, with a time
lag of few seconds) [19, 8, 17, 22, 26, 4, 11]; 3) the joint
individual-group class, where group tracking and individual
tracking are performed simultaneously [21, 18, 1]. Since no
extensive essays have been published on this theme yet, in-
terest readers may refer to [15, 11] for good state-of-the-art
sections.

The group-based approaches are proposed especially
when the scene is highly cluttered so that individual track-
ing cannot be performed, and the detection of the single tar-
gets is unreliable. They assume the groups as nonparametric
regions [25], Gaussian-shaped distributions [12, 10], clus-
ters over graphs structures [15], textures [16]. As tracking
engines, they employ standard approaches, such as Kalman
filtering [12, 10], probability hypothesis density filter [25],
multi-hypothesis filtering [15], or particle filtering [16].

In the individual-based category, compact regions are
classified as different entities, including groups or persons,
exploiting a set of heuristics [19, 8]. In [8], people that
stand close for a while are joined into groups through
a connection graph built by exploiting heuristics on the
moving regions. More principled approaches employ
generative modelling [22], discriminative reasoning [26],
weighted connection graphs [4] and bottom-up hierarchical
clustering [11]. An interesting by-product is presented
in [17], where group tracking is employed for facing
individual occlusions.

Both the above classes of approaches have in fact draw-
backs. The group-based techniques are limited because the
individual trajectories are not analyzed, reducing in simplis-
tic models. In the individual-based approaches, the perfor-
mance is very dependent on the quality of the individual
tracklets; more important, groups are seen as mere conse-
quential events of the behavior of the single targets, whereas
it is widely known in sociology that groups exert important
influence on the acting of the singles.

Joint individual-group techniques deal with individuals
and groups at the same time. Many of them maintain the
structure of a graph in which connected components corre-
spond to groups of individuals: in [21], stochastic differ-
ential equations are embedded in a Markov-Chain Monte
Carlo (MCMC) framework, implementing a probabilistic
transition model for the group dynamics. The problem of
MCMC is that, in its basic form, does not scale efficiently
in high-dimensional state spaces. Lately, in [13], a similar
framework has been augmented by considering inter-group
closeness and intra-group cohesion. In both cases, exper-
iments with few targets are presented. A two-level struc-
ture for tracking that uses a physically-based mass-spring
model is proposed in [18]: the first level deals with individ-
ual tracking, and the second level tracks individuals that are
spatially coherent. Similarly in principle, in [1], two pro-
cesses are involved: the group process considers groups as
atomic entities. The individual process captures how indi-
viduals move, and revises the group posterior distribution.
Both of them do not considers split and merge events.

DEEPER-JIGT lies in this last category, differing from
the state of the art in many respects, primarily in the filtering
mechanism which was inspired by the Decentralized Parti-
cle Filter (DPF) [5]. Moreover, as we will show in the fol-
lowing, DEEPER-JIGT allows to simultaneously deal with
merge and split phenomena and with a varying number of
individuals and groups. Most important, it allows to under-
stand through quantitative measures the effectiveness of the
collaboration of individual and group processes for track-
ing, promoting the latter category of tracking approaches as
the most promising one.

3. Decentralized Particle Filter (DPF)
The DPF [5] addresses the classical non-linear discrete-

time system

ξt+1 = ft(ξt, ηt), yt = ht(ξt, η
y
t ) (1)

where ξt is the state of the system at time t, yt is the
observation or measurement, ηt and ηyt are independent
non-Gaussian noises, and ft and ht are nonlinear functions
(Fig. 2(b)). The goal of the DPF is that of recursively es-
timating the posterior distribution p(ξt|y0:t) through a de-
composition of ξt in two (or more) subspaces, i.e., ξt =
[Xt,Zt]

T . Therefore, Eq. 1 can be written as:

Xt+1 = fxt (Xt,Zt, η
x
t ), Zt+1 = fzt (Xt,Zt, η

z
t ),

yt = ht(Xt,Zt, η
y
t ),

and the posterior distribution factorizes as:

p(Zt,X0:t|y0:t) = p(Zt|X0:t,y0:t) p(X0:t|y0:t) (2)

where X0:t = (X0, . . . ,Xt). In this way, the DPF circum-
vents both the inefficiency and ineffectiveness of the classi-
cal particle filtering when dealing with large sized ξts. The
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Figure 2: Different models for filtering. (a) State decom-
position of the joint state ξt = [Xt,Zt] with the DPF. (b)
Classical particle filtering.

factorization splits the estimation problem in two nested
distributions [5]: (i) p(X0:t|y0:t) and (ii) p(Zt|y0:t,X0:t).
Such distributions are analyzed in a serial way, detailed in
Alg. 1. The underlying idea is that (i) explains a subspace of
the joint space (related to X), and that knowledge is injected
into the estimation of Z in (ii) through the conditional chain
rule. More in detail, the DPF performs numerical approxi-
mations by importance sampling, explaining both terms of
Eq. 2 at time t (steps 1-3), then moving to step t+ 1 (steps
4-7). The distributions highlighted in gray will be explained
in the next section. Distributions with subscripts (e.g., pNz )
are approximated by samples, and are not described in para-
metric form.

In Step 1, the standard importance sampling formulation
(Observation · Dynamics)/(Proposal distribution) is
applied for approximating p(X0:t|yt). The difference with
the standard framework lies in the term y0:t−1, whose for-
mal presence is motivated by a mathematical derivation dis-
cussed in [5] (which is out of the scope of this paper).
Intuitively, the conditioning of y0:t−1 injects the knowl-
edge acquired by explaining y in the Z subspace at time
t − 1. This highlights the bidirectional relationship of the
processes that analyze X and Z because, during the same
time step, operating on X helps in better defining Z, and
across subsequent time steps, operating on Z helps X. Step
2 is a classical re-sampling, that regularizes the distribu-
tions of the samples (their variance being diminished). Step
3 approximates p(Zt|X0:t,y0:t) by importance sampling,
assuming the dynamics equal to the proposal (so dividing
by one). After that, predictions for time t + 1 are made.
As for the previous time step, the X subspace is first an-
alyzed, sampling particles according to a given dynamics
π(Xt+1|X(i)

0:t,y0:t). The information encoded in that sam-
ple set is plugged into the importance sampling approxima-
tion of the posterior p(Zt|X0:t+1,y0:t) (Step 5), yielding to
a second resampling step (Step 6) and to the final sampling
of Z at time t+ 1 (Step 7).

In the original paper, the approach was tested with sim-
ulations on 2D (4D) points, where X and Z lie in two R
(R2) subspaces. In our case, we are dealing with a much
more intriguing and complex problem, where the subspaces

Algorithm 1: The DPF algorithm [5]. INPUT: samples
{X(i)

0:t}i=1,...,Nx , samples {Z(i,j)
0:t }i=1,...,Nx,j=1,...,Nz . The

apices (i, j) mean that for each i particle generated for de-
scribing X we have Nz particles for describing Z. OUTPUT:
importance sampling approximations of Xt+1, Zt+1.

1. Approximation of p(X0:t|yt) through the importance weights:

w
(i)
t ∝

pNz (yt|X(i)
0:t,y0:t−1)pNz (X

(i)
t |X(i)

0:t−1,y0:t−1)

π(X
(i)
t |X(i)

0:t−1,y0:t−1)

.

2. Resample {X(i)
t ,Z

(i,j)
t } according to w(i)

t .

3. Approximation of p(Zt|X0:t,y0:t) through the importance
weights:

q̄
(i,j)
t ∝ p(yt|X(i)

t ,Z
(i,j)
t ) .

4. Generate X
(i)
t+1 according to π(Xt+1|X(i)

0:t,y0:t).

5. Approximation of p(Zt|X0:t+1,y0:t) through the importance
weights

q
(i,j)
t = q̄

(i,j)
t p(X

(i)
t+1|X

(i)
t ,Z

(i,j)
t ) .

6. Resample Z
(i,j)
t according to q(i,j)t .

7. Generation of particles Z(i,j)
t+1 according to the proposal

π(Zt+1|X(i)
0:t+1,Z

(i,j)
t ,y0:t) .

have completely different meaning, other than being higher-
dimensional. In particular, X will be the joint state of the
individuals, Z that of the groups. It follows that all the dis-
tributions introduced above have been re-designed to fit into
the new context.

4. Joint Individual-Group Tracking

Let Xt = {xk
t }Kk=1 be the joint state of theK individuals

at time t and Zt = {zkt }Kk=1 with zkt ∈ {0, 1, . . . , G} be the
joint state of the G groups (K and G may vary over time).
We define xk

t = (xt, yt, ẋt, ẏt) (individual positions and
velocities) and zkt as the group label for the k-th individual.
As an example, suppose we have 5 individuals and 2 groups
at time t: with Zt = [1, 1, 2, 2, 0]T we indicate that the first
two individuals belong to the first group, the third and fourth
individuals are in the second group, and the fifth individual
is a singleton.

The customization of the DPF algorithm for our tracking
scenario requires an appropriate redesign of the probability
distributions highlighted in gray in Alg. 1. As usual in the
particle filtering strategies, distributions may have an ana-
lytical form, and/or they can be approximated by particles’
sets. In general, one prefers the latter case as this allows
one to deal with arbitrarily complex distributions. Analyt-
ical functions are usually simpler, typically with Gaussian
profiles, but this reduces the expressiveness of the tracking



Distribution Analyt. Approx.

π(Xt+1|X0:t,y0:t) " "

p(yt|Xt,Zt) " %

p(Xt+1|Xt,Zt) " %

π(Zt+1|X0:t+1,Zt,y0:t) % "

Table 1: Probability p(·) and proposal π(·) distributions for
DPF. The second and third columns identify which distribu-
tions are evaluated and sampled, respectively.

posterior. The situation for DPF is illustrated in Table 1,
and such distributions will be defined in the following.

Individual Proposal π(Xt+1|X0:t,y0:t). This distribu-
tion models the dynamics of the individuals. Inspired by
[20], we adopt the notion of composite proposal, incorpo-
rating two sources of information:
π(Xt+1|X0:t,y0:t+1) =

απ(Xt+1|Xt) + (1− α)πdet(Xt+1|X0:t,yt+1).

Here, the first part assumes Markovianity between X’s and
conditional independence w.r.t. the observation yt, and
adopts a locally linear dynamics with Gaussian noise:

xk
t+1 = Axk

t + η with A =


1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

 ,
where T is the sampling interval and η ∼ N (0,Σk). There-
fore, xk

t+1 ∼ N (Axk
t ,Σ

k), that is easy to evaluate and sam-
ple from. We have:

π(Xt+1|Xt) =

K∏
k=1

N (xk
t+1|Axk

t ,Σ
k) (3)

that is, a multivariate Gaussian distribution with block-
diagonal covariance matrix: diag(Σ1,Σ2, . . . ,ΣK). We can
assume Σk = Σ for each k = 1, . . . ,K, supposing individ-
uals having usually similar motions.

The second part πdet(Xt+1|X0:t,yt+1) presumes the
presence of a detector. In our case, the distribution is de-
fined as a multivariate Gaussian distribution with the same
covariance matrix of Eq. 3 and the positions of the detec-
tions associated to each target as means. The parameter α
is set once and kept fixed for all the experiments.

Joint Observation Distribution p(yt|Xt,Zt). We adopt
a standard template-based technique [3], where the goal is
to find the hypothesis that is most similar to a template of
the object that is being tracked. To make standard obser-
vation models suitable for our framework, we re-write the
joint observation distribution as follows:

p(yt|Xt,Zt) ∝ p(Zt|yt,Xt) p(yt|Xt). (4)

In this way, we can model p(yt|Xt) as in standard particle
filtering approaches [14]. For simplicity, we define it as:

p(yt|Xt) =

K∏
k=1

p(yt|xk
t ) ∝

K∏
k=1

exp(−λdy dy(f(yt,x
k
t ), τk))

where dy is a distance between features, f(yt,x
k
t ) extracts

features from the current bounding box in the image given
by xk

t and τk is the template of the k-th individual1.
We also assume conditional independence between Zt

and yt, i.e., p(Zt|yt,Xt, ) = p(Zt|Xt). This term models
the likelihood that Zt has been generated from Xt. Each
group hypothesis Z(i,j)

t can be seen as a clustering hypoth-
esis of the data X

(i)
t . Hence, p(Zt|Xt) can be formulated

in terms of cluster validity evaluation as follows:

p(Zt|Xt) ∝ exp(−λdcl
dcl(Zt,Xt))

where dcl(Zt,Xt) is a cluster validity measurement of the
hypothesis Zt with respect to Xt. Among the different clus-
ter validity measurements, we choose the Davies-Bouldin
index [9], because of its simplicity and versatility.

Joint Individual Distribution p(Xt+1|Xt,Zt). This dis-
tribution models the dynamics of the individual taking into
account the presence of the group:

xk
t+1 = xk

t +Bgk
t + η (5)

B =


0 0 T 0
0 0 0 T
0 0 0 0
0 0 0 0

 , gk
t =

∑K
l=1 x

l
t I(zkt == zlt)∑K

l=1 I(zkt == zlt)

I(·) is the indicator function and gk
t is the position and ve-

locity of the group the k-th individual belongs to. This term
mirrors the fact that individuals in the same group should
have similar dynamics. Similarly to Eq. 3, the resulting
probability distribution is:

p(Xt+1|Xt,Zt) =

K∏
k=1

N (xk
t+1|xk

t +Bgk
t ,Σ).

Joint Group Proposal π(Zt+1|X0:t+1,Zt,y0:t). The
joint group proposal models the dynamics of the groups,
and assumes the form

π(Zt+1|X0:t+1,Zt,y0:t) =

= f(
∏
g

π(egt+1|X0:t+1,Zt,y0:t),Zt) (6)

= f(
∏
g

π(egt+1|X0:t+1, gt, g
′
t,y0:t),Zt) (7)

1We use Bhattacharyya distance between RGB color histograms and
the template is never updated. Note that plenty of more sophisticated tech-
niques could fit our framework.
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Figure 3: Computation of the state estimate Z̃t that deals
with discrete labels.

where the surrogate distribution π(egt+1|X0:t+1,Zt,y0:t) in
Eq. 6 operates by assigning probabilities on the events re-
lated to the g-th group, i.e., eg ∈ {Merge,Split,None}. In
other words, given a group configuration Zt, whose indi-
viduals moved as recorded in X0:t+1, we want to model the
probability that a merge or split event occurs, or that the
group assignment of each individual remains unchanged.
To simplify the modeling, the surrogate is rewritten as in
Eq. 7, considering only interactions between a group g and
its nearest group g′. The deterministic function f translates
a selected event in a novel configuration Zt+1, changing
the label assignment of Zt, enlarging or diminishing its size
if novel objects (dis)appear. Note that in our approach, a
group is an entity formed at least by two individuals.

The distribution π(egt+1|X0:t+1, gt, g
′
t,y0:t) is offline

learned, adopting the multinomial logistic regression. To
this end, a set of possible scenarios containing events have
been simulated and labelled. We use as features 1) the inter-
group distance between g and the nearest group g′, con-
sidering their positions and sizes (dKL, Kullback-Leibler
distance between Gaussians) and velocities (dv , Euclidean
distance), and 2) the intra-group variance between the po-
sitions of the individuals in the g-th group (dintra). Thus,
the input of the multinomial logistic regression is a 6-
dimensional vector, i.e., (dKL, dv, dintra) for time t and t+1.

Once the model has been trained, performing inference is
straightforward. Given an existing group g, (dKL, dv, dintra)
for time t and t + 1 are computed and fed into the classi-
fier, obtaining an estimate of π(egt+1|X0:t+1, gt, g

′
t,y0:t).

A new event egt+1 is sampled from that distribution. Note
that sampling from it is easy and efficient, because it is dis-
crete and the set of possible events is relatively small. Once
the event egt+1 has been sampled from the proposal distribu-
tion, the function f(·) performs the action corresponding to
the selected event to generate Zt+1.

In addition, we add a prior over the events in order to
reduce the merge between too-large groups. The prior is
defined as N (|egt+1|;µ, σ) where |egt+1| is the size of the
g-th group after the event g (in the experiments, µ = 1 and
σ = 1.5).

State Estimate. In this section, we describe how to esti-
mate the most likely joint state. The joint probability distri-
bution p(Zt,X0:t|y0:t) can be estimated by the DPF once
defined each probability distribution in Table 1. The joint
state is usually defined as the expected value of the state un-
der a certain distribution, that is, Xt = Ep(Xt|y0:t) and Zt =
Ep(Zt|y0:t). Using the empirical approximation given by the
DPF, we can easily estimate Xt as X̃t =

∑Nx

i=1 w
(i)
t X

(i)
t .

Since the domain Zt is based on discrete labels, the ex-
pectation operation cannot be performed. Instead, we com-
pute a distribution over the possible labels as depicted in
Fig. 3. Starting from the matrices Zt and q̄t, we compute the
following distribution for the k-th individual as weighted
histogram:

Whk,(i,g) =

Nz∑
j=1

q̄
(i,j)
t I(zk,(i,j)t == g).

This gives a similar representation of the sum over j but it
considers labels g (step (a) in Fig. 3). Then, each Whk,(i,g)

is summed over i (step (b) in Fig. 3), and we take the maxi-
mum likelihood estimate of the association between groups
and individuals to obtain Z̃t (step (c) in Fig. 3).

5. Experiments
This section shows the potentialities of DEEPER-JIGT

in performing joint individual-group tracking on different
datasets, while investigating the effects of the mutual sup-
port of the group and the individual tracking processes. The
structured filtering architecture of DEEPER-JIGT allowed
to achieve this goal, by inhibiting conditional dependencies
in distributions where mixed terms (X and Z) do appear.

Datasets. The ideal benchmark should handle a scenario
where labelled groups of people are evolving, appear-
ing and disappearing spontaneously, experiencing split and
merge events. This correspond to cocktail party-like sit-
uations, i.e., focusing on social areas where people arrive
alone or with other people, move from one group to another,
stay still while conversing, etc. Nowadays, such a picture is
missing, since almost all the existent datasets with labelled
groups report different situations, mainly wandering people
following a main flow direction (e.g., [23]). In this case,
groups are mostly limited to very few people (mostly cou-
ples) and the frequency of merge and split is low.

For these reasons, we propose a novel dataset, freely
downloadable at http://goo.gl/cFXCG, dubbed
Friends Meet. It is composed by 53 sequences, for a total
of 16286 frames. The sequences are partitioned in a syn-
thetic set (28 sequences, 200 frames each), with the aim
of stressing tracking strategies in capturing group events,
without any complex object representation (simple colored



Figure 4: Typical scenarios in the Friends Meet dataset:
merge and split between groups, queue, and complex sit-
uations.

blobs), and a real dataset. In the synthetic set, 18 sequences
are simple, containing 1-2 events with 4-10 individuals; the
other 10 sequences are more challenging, with 10-16 indi-
viduals involved in multiple events.

The real set focuses on an outdoor area where people
usually meet during coffee breaks. This area has been
recorded and annotated by an expert for one month. The ex-
pert reported the events appeared more frequently, building
a screenplay where these events are summarized in order to
limit the dataset size. Therefore, the screenplay was played
by students and employees, resulting in 15 sequences of dif-
ferent length (between 30 sec. to 1.5 minutes), judged by
the expert as sufficiently realistic. In total, the sequences
contain from 3 to 11 individuals, and all of them are ground
truthed with individual and group information. Some typi-
cal scenes are depicted in Fig. 4.

In addition, we provide both quantitative and qualitative
results using the BIWI dataset [23], even though it is not
well-suited for our method because group events are absent.

Evaluation Metrics. The evaluation of DEEPER-JIGT
considered the individual tracking and the group tracking
results. Unfortunately, while there exists a lot of stan-
dard evaluation metrics for individual tracking, there are no
widely-accepted measures for group tracking. For this rea-
son, we cast the metrics proposed in [24, 2] to deal with
groups.

For individual tracking, we employ Mean Square Error
(MSE) over the positions of the individuals, and its stan-
dard deviation. The group results have been evaluated by
adapting the metrics proposed in [24] for detection (False
Positive (FP) and False Negative (FN)) and in [2] for track-
ing (Multi-Object Tracking Precision (MOTP) and Accu-
racy (MOTA)). The notion of person bounding box is sobsti-
tuted to that of convex hull around the members of groups.
Thus, intersection operations among bounding boxes trans-
late naturally in that of convex hulls. We also introduced
the Group Detection Success Rate (GDSR) as the detection
rate over time of the correctly detected groups. A group is
correct if at least the 60% of its members are detected [7].

Results. The evaluation focused first on the synthetic part
of the Friends Meet dataset. For the investigation of the mu-
tual support of the group and the individual tracking pro-
cesses, we build three variants of DEEPER-JIGT, that is,
VAR1, VAR2 and VAR3 .

MSE px
(std) 1-FP 1-FN GDSR MOTP px MOTA

DEEPER-JIGT 2.18
(4.96)

93.74% 82.94% 79.65% 16.66 57.28%

VAR1 2.19
(5.46)

93.77% 81.86% 78.25% 17.74 55.99%

VAR2 3.72
(11.81)

82.11% 51.61% 48.09% 151.03 33.53%

VAR3 2.52
(8.35)

65.09% 24.56% 18.89% 397.85 4.86%

Table 2: Results on synthetic sequences: individual track-
ing (column 2), group detection (columns 3-5) and group
tracking (column 6-7). For MSE and MOTP (in pixels), the
lower the better.

VAR1 assumes p(Xt+1|Xt,Zt) = p(Xt+1|Xt), in-
hibiting the contribute of the group in defining the dy-
namics of the individual, by canceling out the Bgk

t term
of Eq. 5. VAR2 is equal to VAR1, assuming in addition
π(Zt+1|X0:t+1,Zt,y0:t) = π(Zt+1|Zt,y0:t), that is, sup-
pressing the knowledge of the individual state in promot-
ing events for the group evolution. In practice, instead of
sampling from the surrogate distribution of events, we sam-
pled from the combinatorial space of possible configura-
tions of the group hypothesis, supposing them distributed in
a uniform fashion. From DEEPER-JIGT to VAR2, we can
notice that the distributions become conditionally indepen-
dent, and thus sampling is performed indipendently in each
state space. Only the observation model links them. Fi-
nally, VAR3 is VAR2 with p(yt|Xt,Zt) = p(yt|Xt), block-
ing the contribution of the clustering evaluation, i.e., fixing
p(Zt|yt,Xt) = 1 in Eq. 4. This way, the model judges
the individuals, but not how well they fit in groups hypothe-
ses. In practice, this variant separates the individual track-
ing from the group tracking in two different particle filters.

The results on the synthetic data are summarized in Ta-
ble 2. The first significant message is clear: the compo-
nents of DEEPER-JIGT are all needed for reaching the best
performances. Moreover, all the performance measures de-
crease when incrementally pruning away connections be-
tween the individuals and the groups (from VAR1 to VAR3).

Actually, the performance of VAR1 tells that in a joint
individual-group tracking framework, the individual dy-
namics should consider the influence that the group exerts
on the single person. This helps just a little the group de-
scription, while it is uninfluential if we focus on the individ-
ual tracking only. We think that this relationship could be
exploited more effectively if more advanced group-driven
dynamics are injected, e.g., [23, 26, 7].

The performance of VAR2 suggests that the dynamics of
a group (intended as the possibility of splitting or merging)
cannot be treated as an independent process, and must nec-
essarily be linked to the behavior of the single individuals.
This is intuitive, and is beneficial for both individual and
group tracking. Even in this case, social grouping mecha-
nisms [23, 26, 7] can boost the performances. The perfor-



a) FM dataset
1-FP 1-FN GDSR MOTP m MOTA

DEEPER-JIGT.2 97.05% 93.82% 88.46% 0.64 71.70%
DEEPER-JIGT 95.61% 91.13% 86.11% 0.80 67.58%

VAR3 74.77% 37.72% 25.92% 2.80 2.73%

b) BIWI dataset
1-FP 1-FN GDSR MOTP m MOTA

DEEPER-JIGT 53.77% 78.00% 53.59% 0.44 29.43%
VAR3 60.55% 51.57% 29.60% 1.03 9.58%

Table 3: Group results on a) the FM dataset and b) the BIWI
dataset: group detection (columns 2-4) and group tracking
(column 5-6). For MOTP (in meters), the lower the better.

mance of VAR3 is the most enlightening: it shows that for
modeling groups and individuals a joint treatment is highly
recommendable, being the performances of the two separate
processes strongly inferior to DEEPER-JIGT.

The second analysis takes into account the real datasets.
Since these datasets are very challenging for tracking, due
to occlusions and low resolution, a track is re-initialized
from the ground truth when the target is lost (distance of
0.6 meters). The mean re-initialization rate for a target is
3.2% for the real FM dataset. We compare DEEPER-JIGT
against VAR3 and DEEPER-JIGT.2. In DEEPER-JIGT.2,
we assume that p(X0:t|yt) is completely known, that is,
at each time the individual tracker is initialized from the
ground truth. In other words, this variant of the algorithm
evaluates the method when very low uncertainty on individ-
ual tracking is present, thus representing an upper bound on
the group performances.

The group tracking accuracies on the FM dataset and
the BIWI dataset are summarized in Table 3(a-b). The ta-
ble highlights the increase of the performance from VAR3
to DEEPER-JIGT. Differently from the synthetic scenario,
the false positive rates (1−FP) of the different methods are
close (Table 3(a)). The low value of 1−FN for VAR3 mir-
rors the fact that the method looses the 56% of the groups.
The other metrics follow the trend of the results on the syn-
thetic dataset.

Comparing DEEPER-JIGT and DEEPER-JIGT.2 (Ta-
ble 3(a)), it is interesting to note that if p(X0:t|yt) is known,
we obtain very similar results. This means that the uncer-
tainty in the process does not affect very much the joint
individual-group tracking. Moreover, Table 3(b) shows that
even if the BIWI dataset is harder due to the low resolution
and does not contain groups event, DEEPER-JIGT is still
able to get reasonable results.

Qualitative results of DEEPER-JIGT on FM dataset
(rows 1-3) and BIWI dataset (row 4) are reported in Fig. 5
and the video at http://youtu.be/J_HDJflQATo.
The figure shows different examples of merge (row 1), ini-
tialization and split (row 2), and more complex scene where
multiple events occur (row 3). In the sequence seq eth
of BIWI dataset (row 4), we noticed that DEEPER-JIGT is
able to capture groups of wandering people, even in the case

of crowd.

6. Conclusions
This study promotes the joint online treatment of indi-

viduals and groups in tracking applications. Apart from so-
ciological matters (people may decide to move differently
whether they are alone or not), we showed here that this
strategy is convenient quantitatively. As tracking strategy,
we have been inspired from a brand-new filtering mech-
anism named Decentralized Particle Filter, leading to the
design of the DEEPER-JIGT framework. The acronym
mirrors its potentially deep customizability, that allows to
tweak many filtering mechanisms, defining the dynamics of
the group given the individual states and viceversa, how ob-
servations are evaluated, etc., as modules of a serial frame-
work. This is indeed a first attempt which proved to de-
serve further investigation. Next steps will be devoted to
ameliorate the dynamics modules, possibly by embedding
social force models as individual dynamics, improving how
groups are evaluated, for example by importing social sig-
nal processing notions. At the same time, the inherent par-
allelization of the Decentralized Particle Filter, neglected in
this paper and ignored in the coding of DEEPER-JIGT, can
be taken into account.
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