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Supplementary Material: Joint Individual-Group
Modeling for Tracking

Loris Bazzani, Matteo Zanotto, Marco Cristani, Member, IEEE,
and Vittorio Murino, Senior Member, IEEE

Abstract—In this document, we extend the main manuscript with a detailed descriprion of the formulation of the joint individual-group
tracking problem, the derivation of the proposed model and the algorithm. The goal is to give to the reader a better insight on the
proposed solution and the type of interactions that exist between the two subspaces Θ and X. In addition, the details of the joint group
proposal used in the DEEPER-JIGT are discussed to make it clearer. Finally, we perform an extended analysis of the results aimed
at understanding which scenarios are better for the DEEPER-JIGT and which for the DP2-JIGT. We also attached to this document a
video showing the qualitative results of the presented model on different datasets.
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1 DERIVATIONS AND DETAILS OF THE MODEL

Let us consider the general state-space model of Fig. 1a,
representing the classical nonlinear discrete-time system
employed for the generic object tracking. Formally, the
system is defined as follows:

ξt+1 = ft(ξt, η
ξ
t ),

yt = ht(ξt, η
y
t )

(1)

where ξt is the state of the system at time t, yt is the
observation or measurement, ηξt and ηyt are independent
non-Gaussian noises, and ft and ht are nonlinear un-
known functions. Eq. 1 practically leads to the condi-
tional probabilities defined by the link from ξt to ξt+1

and the link from ξt to yt in Fig. 1a.
Let us assume that the state space can be decomposed

into two subspaces that are conditionally dependent. The
subspaces are represented by the variables Xt and Θt,
such that ξt = [Xt,Θt]

T . In the individual-group track-
ing formulation, we assume that the subspace of the
individuals is Xt and the subspace of the groups is Θt.

The system of Eq. 1 is thus rewritten as:

Xt+1 = fxt (Xt,Θt, η
x
t ),

Θt+1 = fΘ
t (Xt+1,Θt, η

Θ
t ),

yt = ht(Xt,Θt, η
y
t ).

The DEEPER-JIGT and the DP2-JIGT (Fig. 1b) are in-
stances of this general formulation. In both models, the
state of the individuals Xt+1 depends on its previous
state Xt and the previous state of the groups Θt, and the
state of the groups Θt+1 depends on the current state of
the individuals Xt+1 and the previous state of the groups
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(a) Joint state-space model.

(b) The proposed model.

Fig. 1: Models for joint individual-group tracking.

Θt. These relations encode the interdependence between
the two subspaces and are built into the model through
defining appropriate conditional probability densities.
Finally, the observation yt+1 depends on both the state
of the individuals and groups, because both of them
generate the current measurements.

Following the line of reasoning of [1], we show in
the following how to recursively estimate the posterior
distribution p(Θt,X0:t|y0:t) through a decomposition of
the joint state space in two subspaces. The posterior
distribution factorizes as follows:

p(Θt,X0:t|y0:t) = p(Θt|X0:t,y0:t) p(X0:t|y0:t) (2)

where Xt is the individual state variable, Θt is the
group state variable, and y0:t = (y0, . . . ,yt) and X0:t =
(X0, . . . ,Xt) represent the sequence of observations and
states up to the time t, respectively.
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1.1 First subproblem: p(Θt|Xt,y0:t)

The first term of Eq. 2 becomes:

p(Θt|X0:t,y0:t) ∝ p(Θt|X0:t,y0:t−1)p(yt|X0:t,Θt) (3)
= p(Θt|X0:t,y0:t−1)p(yt|Xt,Θt) (4)

where the independence assumption p(yt|X0:t,Θt) =
p(yt|Xt,Θt) is shown in the model of Fig. 1b.

The first term of Eq. 4 has to be expressed in term of
Θt−1 to obtain the classic recursion of the particle filter:

p(Θt|X0:t,y0:t−1) =

=

∫
p(Θt,Θt−1|X0:t,y0:t−1)dΘt−1

=

∫
p(Θt|Θt−1,X0:t,y0:t−1)p(Θt−1|X0:t,y0:t−1)dΘt−1

=

∫
p(Θt|Θt−1,Xt)p(Θt−1|X0:t,y0:t−1)dΘt−1 (5)

where in the last equivalence we applied the conditional
independence assumptions derived directly from the
model of Fig. 1b to the first term.

The second term of Eq. 5 is factorized as:

p(Θt−1|X0:t,y0:t−1) ∝
∝ p(Xt|X0:t−1,Θt−1,y0:t−1)p(Θt−1|X0:t−1,y0:t−1)

= p(Xt|Xt−1,Θt−1)p(Θt−1|X0:t−1,y0:t−1) (6)

where we applied the conditional independence as-
sumptions derived from the model of Fig. 1b. Now,
it is possible to see the recursion in the inference
process: p(Θt|X0:t,y0:t) in Eq. 4 is estimated given
p(Θt−1|X0:t−1,y0:t−1) in Eq. 6. Therefore, sequential
importance sampling can be applied to solve the in-
tegral of Eq. 5, where the proposal distribution is
π(Θt|Θt−1,Xt) = p(Θt|Θt−1,Xt) in our experiments.

1.2 Second subproblem: p(X0:t|y0:t)

The second term of Eq. 2 is factorized as follows:

p(X0:t|y0:t) =

= p(Xt|X0:t−1,y0:t−1)p(X0:t−1|y0:t−1)

∝ p(Xt|X0:t−1,y0:t−1)p(yt|X0:t,y0:t−1)p(X0:t−1|y0:t−1).
(7)

The recursion is straightforward because p(X0:t|y0:t) de-
pends directly from p(X0:t−1|y0:t−1). However, the first
two term of the equation should be further expanded to
introduce the dependency with Θ.

The first term is re-written as follows:

p(Xt|X0:t−1,y0:t−1)

=

∫
p(Xt,Θt−1|X0:t−1,y0:t−1)dΘt−1

=

∫
p(Xt|Θt−1,X0:t−1,y0:t−1)p(Θt−1|X0:t−1,y0:t−1)dΘt−1

=

∫
p(Xt|Θt−1,Xt−1)p(Θt−1|X0:t−1,y0:t−1)dΘt−1 (8)

where we applied the conditional independence as-
sumptions derived from the model of Fig. 1b. This inte-
gral is solved through sequential importance sampling
given p(Θt−1|X0:t−1,y0:t−1).

The second term of Eq. 7 becomes:

p(yt|X0:t,y0:t−1) =

=

∫
p(yt,Θt|X0:t,y0:t−1)dΘt

=

∫
p(yt|Θt,X0:t,y0:t−1)p(Θt|X0:t,y0:t−1)dΘt

=

∫
p(yt|Θt,Xt)p(Θt|X0:t,y0:t−1)dΘt (9)

where in the last equivalence we applied the conditional
independence assumptions derived directly from the
model of Fig. 1b to the first term. The first term of
Eq. 9 is the observation model, while the second term
is computed as in Eq. 5.

2 JOINT GROUP PROPOSAL FOR THE
DEEPER-JIGT
In this section, we present in details the approach to
learn the joint group proposal followed in [2].

The idea followed by the DEEPER-JIGT is to use a
surrogate distribution over the possible events that may
happen to a group (namely merge, split, and none). The
designed surrogate distribution is easier to sample from
than the original proposal. The joint group proposal for
the DEEPER-JIGT is defined as:

π(FΘt+1|Xt+1,
FΘt) =

= f(
∏
g

π(egt+1|X0:t+1,
FΘt),

FΘt) (10)

= f(

G∏
g=1

π(egt+1|Xt+1, gt, g
′
t),

FΘt) (11)

where the surrogate distribution π(egt+1|X0:t+1,
FΘt) in

Eq. 10 operates by assigning probabilities on the events
related to the g-th group, i.e., eg ∈ {Merge, Split,None}.
In other words, given a group configuration FΘt and
an individual configuration Xt+1, we want to model
the probability that a merge or split event occurs, or
that the group assignment of each individual remains
unchanged. To simplify the modeling and make the
problem tractable, the surrogate is rewritten as in Eq. 11,
considering only interactions between a group g and its
nearest group g′. The deterministic function f translates
a selected event in a novel configuration FΘt+1. This
is done by changing the label assignment of FΘt and
appropriately modifying its size when groups appear
or disappear as a consequence of the split and merge
events. Note that in our approach, a group is an entity
formed by at least two individuals.

The distribution π(egt+1|X0:t+1, gt, g
′
t) is learned offline

through a multinomial logistic regression. In order to
obtain training data, we created a naive simulator to
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generate a set of possible videos/scenarios containing
events. There are two reasons for using a simulator: 1)
it is straightforward to obtain annotations of the events,
and 2) it is usually hard to obtain a significant number
of examples of merge and split events from real videos.

Given the simulated scenarios, groups were modelled
as Gaussian distributions over observed points (individ-
uals). The following features were extracted and used
in the learning stage: 1) inter-group distance between
g and the nearest group g′, considering their position
and size (dKL, symmetrized Kullback-Leibler divergence
between Gaussians), 2) inter-group difference between
velocities (dv , Euclidean distance), and 3) the intra-group
variance between the positions of the individuals in the
g-th group (dintra). The input of the multinomial logistic
regression is obtained by concatenating (dKL, dv, dintra)
for time t and t+ 1, resulting in a 6-dimensional vector.

Once the model has been trained, performing infer-
ence given a novel feature vector is straightforward.
Given an existing group g, (dKL, dv, dintra) for time t and
t+ 1 are computed and fed into the classifier, obtaining
the probability of observing a group split, a merge with
the closest group g′ or no event. We use this discrete
probability as an estimate of π(egt+1|X0:t+1, gt, g

′
t). A

new event egt+1 is sampled from this distribution. Note
that sampling from it is efficient because it is a Discrete
distribution and the set of possible events is relatively
small. Once the event egt+1 has been sampled from the
proposal distribution, the function f(·) performs the
action corresponding to the selected event to generate
FΘt+1.

3 DEEPER ANALYSIS OF THE RESULTS

In this section, we perform a deeper analysis of the
DEEPER-JIGT or the DP2-JIGT proposed in the main
paper on the FM dataset. Fig. 2 shows examples of both
synthetic and real data from the dataset.

The aim of this analysis is highlighting in which appli-
cation scenarios the DEEPER-JIGT or DP2-JIGT should
be preferred. To evaluate this, we divided the synthetic
and real FM dataset in 5 scenarios:
• opposite: individuals and/or groups going in oppo-

site directions but without merging;
• merge: individuals and/or groups merge together;
• split: groups split in smaller groups or individuals;
• multiple events: complex scenario where groups and

individuals take part in multiple split and merge;
• queueing: individuals are in a queue.

As we discussed in the main paper, our model deals with
self-organizing groups, and not with temporary group-
like formations induced by external forces. For the sake
of completeness, we decided to include the analysis of
the queues anyway in this Supplementary Material.

Table 1 shows how the different application scenarios
are represented in the Friends Meet datasets.

Table 2 reports the results on the Friends Meet syn-
thetic dataset. The evaluation is performed with the

Scenario FM synth. FM real
opposite 5 3
merge 5 4
split 5 3
multiple events 10 3
queuing 3 2

TABLE 1: Subdivison of videos of the Friends Meet
synthetic (FM synth.) and real (FM real) datasets in the
five application scenarios.

statistics introduced in the main paper. The results of
the same analysis for the real FM dataset are reported in
Table 3.

From the results in Tables 2 and 3 the following can
be highlighted:
• When no events occur (rows 2-3), the DP2-JIGT

performs very well.
• When some events occur (rows 4-7), the DP2-JIGT

outperforms the DEEPER-JIGT in certain statistics,
but it does not perform as well in others (e.g., GDSR
row 4 column 6 of Table 2). This is due to the
fact that when an event occurs, the online learning
method of the DP2-JIGT needs more frames than
the offline learning method of the DEEPER-JIGT to
learn the new scenario. Once enough frames are
observed, though, the online learning strategy is
more accurate.

• In case of multiple events (row 8-9), the DEEPER-
JIGT has some difficulties to deal with more com-
plex cases with multiple targets and multiple split
and merge, because the offline-trainined model is
not able to generalize to more complex scenarios,
while the online learning method is able to adapt
itself to the situation.

• The last 2 rows contain the queue class (excluded
on the main paper), where one can notice that the
DP2-JIGT have high false positive rate and thus high
MOTA. This is the consequence of the social thresh-
old, that in the case of queues keeps oversegmenting
the queues in sub-groups.

Some qualitative results that compares the DEEPER-
JIGT and the DP2-JIGT are reported in Fig. 3 and the
video at http://youtu.be/TOYm060sZDc. In particular,
an advantage of the DP2-JIGT is that it is able to initialize
groups faster than the DEEPER-JIGT (e.g., S05 t = 6).
This is due to the fact that the DEEPER-JIGT tries to
merge pairs of individuals and/or groups, while the
DP2-JIGT uses all the data simultaneously.

We also noticed that the DEEPER-JIGT tends to merge
groups with singleton and sometimes with other groups
even if they are far away (e.g., S07 t = 202 and t = 366
in Fig. 3), while the DP2-JIGT uses the social constraint
to avoid it.

The advantage of the DP2-JIGT over the DEEPER-JIGT
is in general due to the fact that the sequences are long
enough to online learn the way groups evolve, bringing
the DP2-JIGT to generate better hypotheses that have to
be evaluated. On the other hand, when the individuals
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Fig. 2: Some examples of the scenarios contained in the Friends Meet dataset (synthetic and real videos) with the
ground truth of individuals and groups.

TABLE 2: Results on the synthetic FM dataset on the different cluster of videos.

Video Cluster Method MSE [px]
(std) 1-FP 1-FN GDSR MOTP [px] MOTA

Opposite DP2-JIGT 0.85
(0.69)

100.00% 100.00% 100.00% 0.82 100.00%

DEEPER-JIGT 1.01
(0.82)

99.85% 82.10% 81.60% 13.51 65.65%

Merge DP2-JIGT 1.24
(1.16)

99.70% 89.90% 75.90% 2.75 82.20%

DEEPER-JIGT 1.39
(1.24)

94.50% 89.00% 82.60% 9.36 65.09%

Split DP2-JIGT 1.21
(1.28)

88.10% 86.05% 84.00% 4.28 67.52%

DEEPER-JIGT 1.39
(1.49)

92.95% 82.30% 81.85% 6.57 60.78%

Multiple events DP2-JIGT 2.72
(10.34)

91.05% 90.22% 87.33% 37.88 54.06%

DEEPER-JIGT 3.80
(11.78)

89.16% 75.83% 72.43% 30.69 37.82%

Queueing DP2-JIGT 1.11
(1.11)

56.50% 99.00% 93.17% 8.46 46.67%

DEEPER-JIGT 1.39
(1.16)

98.83% 99.00% 91.83% 4.14 89.33%

stay on the scene for a limited period of time (e.g., the
BIWI sequence “eth”), the DP2-JIGT is able to perform
group tracking when the scenario is not much crowded.
In this situation, the DEEPER-JIGT is preferred (see last
two columns, last two rows in Fig. 3).
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TABLE 3: Results on the real FM dataset on the different cluster of videos.

Video Cluster Method 1-FP 1-FN GDSR MOTP [m] MOTA

Opposite DP2-JIGT 99.61% 98.56% 96.87% 1.01 72.65%
DEEPER-JIGT 94.28% 72.23% 71.32% 1.54 40.00%

Merge DP2-JIGT 98.47% 99.00% 97.66% 0.77 79.96%
DEEPER-JIGT 97.55% 96.82% 93.20% 0.42 79.04%

Split DP2-JIGT 96.90% 95.03% 91.28% 0.96 72.53%
DEEPER-JIGT 94.79% 93.74% 87.36% 0.58 77.05%

Multiple events DP2-JIGT 96.04% 97.10% 91.79% 0.99 68.22%
DEEPER-JIGT 95.65% 94.91% 88.77% 1.11 60.00%

Queueing DP2-JIGT 68.31% 96.92% 85.43% 0.58 31.83%
DEEPER-JIGT 94.89% 98.48% 88.22% 0.29 83.24%

Fig. 3: Qualitative results on sequences of the FM and BIWI datasets comparing the DEEPER-JIGT and the DP2-JIGT.


