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Abstract In video surveillance, person re-identification (re-id) is probably the open
challenge, when dealing with a camera network with non-overlapped fields of view.
Re-id allows the association of different instances of the same person across dif-
ferent locations and time. A large number of approaches have emerged in the last
five years, often proposing novel visual features specifically designed to highlight
the most discriminant aspects of people, which are invariant to pose, scale and il-
lumination. In this chapter, we follow this line, presenting a strategy with three
important key-characteristics that differentiate it with respect to the state of the art:
1) a symmetry-driven method to automatically segment salient body parts, 2) an
accumulation of features making the descriptor more robust to appearance varia-
tions, and 3) a person re-identification procedure cast as an image retrieval problem,
which can be easily embedded into a multi-person tracking scenario, as the obser-
vation model.

1 Introduction

Modeling the human appearance in surveillance scenarios is challenging because
people are often monitored at low resolution, under occlusions, bad illumination
conditions, and in different poses. Robust modeling of the body appearance of a
person becomes mandatory for re-identification and tracking, especially when other
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Fig. 1 Person re-id and re-acquisition pipeline. See the text for details.

classical biometric cues (e.g., face, gait, or fingerprint) are not available or difficult
to acquire.

Appearance-based re-id can be considered as a general image retrieval problem,
where the goal is to find the images from a database that are more similar to the
query. The only constraint is that there is an assumption of the presence of a per-
son in the query image and the images in the database. On the other hand, person
re-identification is also seen as a fundamental module for cross-camera tracking to
keep unique identifiers in a camera network. In this setup, temporal and geometric
constraints can be added to make easier re-id. In general, we define re-identification
as matching the signature of each probe individual to a gallery database composed
by hundreds or thousands of candidates which have been captured in various loca-
tions by different cameras and in different instants. Similarly to re-identification,
multi-person tracking is another problem where the description of individuals plays
an important role to ensure consistent tracks across time. In this context, the prob-
lem can be seen as matching across time the signature (also called template) of the
tracked person with the set of detected individuals. Both re-identification and peo-
ple tracking share the problem of modeling the human appearance in a way that is
robust to occlusion, low resolution, illumination and other issues.

In this chapter, we describe the pipeline for re-identification that has become a
standard in the last few years [14]. The pipeline and the descriptor used for char-
acterizing the human appearance are called Symmetry-Driven Accumulation of Lo-
cal Features (SDALF). The re-id pipeline is defined in six steps (Fig. 1): 1) image
gathering collects images from a tracker, 2) image selection discards redundant in-
formation; 3) person segmentation discards the noisy background information; 4)
symmetry-based silhouette partition discovers parts from the foreground exploiting
symmetric and asymmetric principles; 5) descriptor extraction and accumulation
over time, using different frames in a multi-shot modality; 6) signature matching
between the probe signature and the gallery database.

SDALF is composed by a symmetry-based description of the human body, and
it is inspired by the well-known principle that the natural objects reveal symme-
try in some form. For this reason, detecting and characterizing symmetries is use-
ful to understand the structure of objects. This claim is strongly supported by the
Gestalt psychology school [30] that considers symmetry as a fundamental principle
of perception: symmetrical elements are more likely integrated into one coherent
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object than asymmetric regions. The principles of the Gestaltism have been largely
exploited in computer vision for characterizing salient parts of structured objects
[31, 10, 43, 44]. In SDALF, asymmetry principles allow to segregate meaningful
body parts (head, upper body, lower body). Symmetries help to extract features from
the actual human body, pruning out distracting background clutter. The idea is that
features near the vertical symmetry axis are weighted more than those that are far
from it, in order to obtain information from the internal part of the body, trusting
less the peripheral portions more prone to noise.

Once parts have been localized, complementary aspects of the human body ap-
pearance are extracted in SDALF, highlighting: i) the global chromatic content, by
the color histogram (see Fig. 4(c)); ii) the per-region color displacement, employing
Maximally Stable Colour Regions (MSCR) [18] (see Fig. 4(d)); iii) the presence of
Recurrent Highly Structured Patches (RHSP) [14].

Different feature accumulation strategies can be considered for re-id, and in this
regard the literature is divided in single-shot and multi-shot modes, reflecting the
way the descriptors are designed (see the next section for more details). In the for-
mer case, the signature is built using only one image for each individual, whereas in
the latter multiple images are utilized. The multi-shot mode is strongly motivated by
the fact that in several surveillance scenarios it is really easy to extract multiple im-
ages of the same individual from consecutive frames. For example, if an automatic
tracking system is available, consecutive shots of a tracked individual can be used
in refining the object model against appearance changes. SDALF takes into account
these situations: it accumulates the descriptors from all the available images of an
individual, increasing the robustness and the expressiveness of its description. After
the signature is built, the matching phase consists of a distance minimization strat-
egy to search for a probe signature across the gallery set, in a similar spirit of image
retrieval algorithms.

In this chapter, we discuss how SDALF can be easily adapted to deal with the
multi-person tracking problem, in the same spirit of [5]. The idea is to build a sig-
nature for each tracked target (the template). Then, the signature is matched against
a gallery set: this set is composed by diverse hypotheses that come from a detection
module or from the tracking dynamics. The idea is to employ the matching scores
as probabilistic evaluations of the hypotheses. The template is then updated with
SDALF, as multiple images are gathered over time in the multi-shot mode.

The proposed method is tested on challenging benchmarks: VIPeR [20], iLIDS
for re-id [54], ETHZ [47], and CAVIAR4REID [9], giving convincing performance.
These benchmarks represent different challenges for the re-id problem: pose, view-
point and lighting variations, and occlusions. We test the limit of SDALF by sub-
sampling these datasets up to dramatic resolutions (11× 22 pixels). Moreover, the
multi-person tracker based on SDALF was tested on CAVIAR, which represents a
challenging real tracking scenario, due to pose, resolution and illumination changes,
and severe occlusions.

The rest of the chapter is organized as follows. In Section 2, the state of the art
of re-id is described, highlighting our peculiarities with respect to other approaches.
Section 3 details the re-id pipeline and the SDALF descriptor. Section 4 describes
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Table 1 Taxonomy of the existing appearance-based re-identification methods.

Single-shot Multiple-shot

Learning-based
[47, 41, 36, 32, 21, 46]
[54, 1, 55, 23, 34, 16] [48, 53]

Direct Methods
[2]

SDALF
[7, 52, 19, 22, 45]

SDALF

how the signature matching is performed. Section 5 describes how SDALF can be
embedded into a particle filtering-based tracker. Several results and comparative
analyses are reported in Section 6, and, finally, conclusions and future perspectives
are discussed in Section 7.

2 Related Work

Re-id methods that rely only on visual information are addressed as appearance-
based techniques. Other approaches assume less general operative conditions: ge-
ometry-based techniques exploit geometrical constrains in a scenario with over-
lapped camera views [50, 39]. Temporal methods deal with non-overlapped views
adding a temporal reasoning on the spatial layout of the monitored environment, in
order to prune the candidate set to be matched [25, 33, 42]. The assumption is that
people usually enter in a few locations, spend a fixed period (learned beforehand) in
the blind spots, and re-appear somewhere else in the field of view of a pre-selected
set of cameras. Depth-based approaches consider other sensors (such as RGB-D
cameras) to extract 3D soft-biometric cues from depth images in order to be robust
to the change of clothes [3].

Appearance-based methods can be divided into two groups (see Table 1): the
learning-based methods and the direct methods. Learning-based techniques are
characterized by the use of a training dataset of different individuals where the fea-
tures and/or the policy for combining them are utilized. The common assumption is
that the knowledge extracted from the training set could be generalized to unseen
examples. In [36], local and global features are accumulated over time for each sub-
ject, and fed into a multi-class SVM for recognition and pose estimation, employ-
ing different learning schemes. Viewpoint invariance is instead the main issue ad-
dressed by [21]: spatial and color information are here combined using an ensemble
of discriminant localized features and classifiers selected by boosting. In [32], pair-
wise dissimilarity profiles between individuals are learned and adapted for a nearest
neighbor classification. Similarly, in [47], a high-dimensional signature composed
by texture, gradient and color information is projected into a low-dimensional dis-
criminant latent space by Partial Least Squares (PLS) reduction. Multiple Compo-
nent Learning is casted into the re-id scenario, dubbing it a Multiple Component
Matching and exploiting SDALF as a descriptor, in [46]. The descriptor proposed
in [54] uses contextual visual knowledge coming from the surrounding people that
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form a group, assuming that groups can be detected. Re-id is casted as a binary
classification problem (one vs. all) by [1] using Haar-like features and a part-based
MPEG7 dominant color descriptor. In [41, 55, 53], the authors formulate re-id as
a ranking problem and an informative subspace is learned where the potential true
match corresponds to the highest ranking. Metric learning methods, which learn a
distance metric from pairs of samples from different cameras, are becoming popular,
see [23, 34] . In [16], re-id is defined as a semi-supervised single-shot recognition
problem where multiple features are fused at the classification output level using the
recent multi-view learning framework in [35].

The main disadvantage of learning-based methods is the need of retraining for
environment covariates, e.g., night-day, indoor-outdoor. In addition, some learning-
based approaches also depend on the cardinality and the kind of training set: once
a new individual is added to the gallery set, the classifier should be retrained from
scratch.

The other class of approaches, the direct method class, does not consider train-
ing datasets of multiple people and works on each person independently, usually
focusing on the design of features that capture the most distinguishing aspects of
an individual. In [7], the bounding box of a pedestrian is equally subdivided into
ten horizontal stripes, and the median HSL value is extracted in order to manage
x-axis pose variations. These values, accumulated over different frames, generate a
multiple signature. A spatio-temporal local feature grouping and matching is pro-
posed by [19], considering ten consecutive frames for each person, and estimating a
region-based segmented image. The same authors present a more expressive model,
building a decomposable triangulated graph that captures the spatial distribution of
the local descriptions over time, so as to allow a more accurate matching. In [52],
the method consists in segmenting a pedestrian image into regions, and registering
their color spatial relationship into a co-occurrence matrix. This technique proved
to work well when pedestrians are seen under small variations of the point of view.
In [22], the person re-id scheme is based on the matching of SURF interest points
[4] collected in several images, during short video sequences. Covariance features,
originally employed for pedestrian detection, are extracted from coarsely located
body parts and tailored for re-id purposes [2].

Considering the features employed for re-id, in addition to color information,
which is universally adopted, several other cues are textures [47, 41, 21], edges
[47], Haar-like features [1], interest points [19], image patches [21], and segmented
regions [52]. These features, when not collected densely, can be extracted from
horizontal stripes [7], triangulated graphs [19], concentric rings [54], and localized
patches [2].

Besides, the taxonomy (Table 1) for the re-identification algorithms distinguishes
the class of the single-shot approaches, focusing on associating pairs of images, each
containing one instance of an individual, from the class of multiple-shot methods.
The latter employs multiple images of the same person as probe or gallery elements.
The assumption of the multi-shot methods is that individuals are tracked, so that it
is possible to gather lots of images. The hope is that the system will obtain a set of
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images that vary in terms of resolution, partial occlusions, illumination, poses, etc.
In this way, we can build a significant signature of each individual.

Looking at Table 1, which reports all these 4 paradigms of re-id, it is worth
noting that direct single-shot approaches represent the case where the least informa-
tion is employed. For each individual, we have a single image, whose features are
independently extracted and matched against hundreds of candidates. The learning-
based multi-shot approaches, instead, are in the opposite situation. The proposed
method lies in the class of the direct strategies and works both in the single and in
the multi-shot modality.

3 Symmetry-driven Accumulation of Local Features (SDALF)

As discussed in the previous section, we assume to have a set of trackers that esti-
mate the trajectories of each person in the several (non-)overlapped camera views.
For each individual, a set of bounding boxes can be obtained (from one or more
consecutive frames), and SDALF analyzes these images to build a signature while
performing matching for recognizing individuals in a database of pre-stored indi-
viduals. The proposed re-id pipeline of SDALF consists of six phases as depicted in
Figure 1:

1. Image Gathering aggregates images given by the trajectories of the individuals
and their bounding boxes.

2. Image Selection selects a small set of representative images, when the number of
images is very big (e.g., in tracking) in order to discard redundant information.
[Section 3.1]

3. Person Segmentation separates the pixels of the individual (foreground) from the
rest of the image (background) that usually “distracts” the re-id. [Section 3.2]

4. Symmetry-based Silhouette Partition detects perceptually salient body regions
exploiting symmetry and asymmetry principles. [Section 3.3]

5. Descriptor Extraction and Accumulation composes the signature as an ensem-
ble of global or local features extracted from each body part and from different
frames. [Section 3.4]

6. Signature Matching minimizes a certain similarity score between the probe sig-
nature and a set of signatures collected in a database (gallery set). [Section 4]

The nature of this process is slightly different (steps 5 and 6) depending on if we
have one or more images, that is, single- or multiple-shot case, respectively.

3.1 Image Gathering and Selection

The first step consists in gathering images of the tracked people. Since there is a
temporal correlation between images of each tracked individual, redundancy is ex-
pected. Redundancy is therefore eliminated by applying the unsupervised Gaussian
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clustering method [17] that is able to automatically select the number of clusters.
Hue Saturation Value (HSV) histogram of the cropped image of the individual is
used as the feature for clustering, in order to capture appearance similarities across
different frames. HSV histograms are invariant to small changes in illumination,
scale and pose, so different clusters will be obtained. The output of the algorithm is
a set of Nk clusters for each person (k stays for the k-th person). Then, we build the
set Xk = {Xk

n}Nk
n=1 by randomly selecting an image of the k-th person for each clus-

ter. Experimentally, we found that clusters with a small number of elements (= 3 in
our experiments) usually contain outliers, such as occlusions or partial views of the
person, thus these clusters are discarded. It is worth noting that the selected clusters
can still contain occlusions and bad images, hard for the re-id task.

3.2 Person Segmentation

Person segmentation allows the descriptor to focus on the individual foreground,
avoiding being distracted from the noisy background. When videos are available
(e.g., a video-surveillance scenario), foreground extraction can be performed with
standard motion-based background subtraction strategies such as [49, 13, 11, 40]. In
this work, the standard re-id datasets, which contain only still images, constrained
us to use the Stel Component Analysis (SCA) [27]. However, we claim that any
other person segmentation method can be used as a component of SDALF.

SCA lies on the notion of “structure element” (stel), which can be intended as an
image portion whose topology is consistent over an image class. In a set of given
objects, a stel is able to localize common parts over all the instances (e.g., the body
in a set of images of pedestrians). SCA extends the stel concept as it captures the
common structure of an image class by blending together multiple stels. SCA has
been learned beforehand on a person database not considering the experimental data,
and the segmentation over new samples consists in a fast inference (see [27, 5] for
further details).

3.3 Symmetry-based Silhouette Partition

The goal of this phase is to partition the human body into salient parts, exploiting
asymmetry and symmetry principles. Considering a pedestrian acquired at very low
resolution (see some examples in decreasing resolutions in Fig. 2), it is easy to
note that the most distinguishable parts are three: head, torso and legs. We present
a method that is able to work at very low resolution, where more accurate part
detectors, such as the pictorial structures [9], fail.

Let us first introduce the chromatic bilateral operator defined as:

C(i,δ ) ∝ ∑
B[i−δ ,i+δ ]

d2 (pi, p̂i) (1)
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Fig. 2 Images of individuals at different resolutions (from 64× 128 to 11× 22) and examples of
foreground segmentation and symmetry-based partitions.

where d(·, ·) is the Euclidean distance, evaluated between HSV pixel values pi, p̂i,
located symmetrically with respect to the horizontal axis at height i. This distance
is summed up over B[i−δ ,i+δ ], i.e., the foreground region (as estimated by the ob-
ject segmentation phase) lying in the box of width J and vertical extension 2δ + 1
around i (see Fig. 3). We fix δ = I/4, proportional to the image height, so that scale
independency can be achieved.
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Fig. 3 Symmetry-based silhouette partition. First the asymmetrical axis iT L is extracted, then iHT ;
afterwards, for each Rk, k = {1,2} region the symmetrical axes jLRk are computed.

The second operator is the spatial covering operator, which calculates the differ-
ence of foreground areas for two regions:
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S(i,δ ) =
1

Jδ

∣∣A(B[i−δ ,i]
)
−A

(
B[i,i+δ ]

)∣∣ , (2)

where A
(
B[i−δ ,i]

)
, similarly as above, is the foreground area in the box of width J

and vertical extension [i−δ , i].
Combining opportunely C and S gives the axes of symmetry and asymmetry. The

main x-axis of asymmetry is located at height iT L:

iT L = argmin
i

(1−C(i,δ ))+S(i,δ ), (3)

i.e., we look for the x-axis that separates regions with strongly different appearance
and similar area. The values of C are normalized by the numbers of pixels in the
region B[i−δ ,i+δ ]. The search for iT L holds in the interval [δ , I−δ ]: iT L usually sepa-
rates the two biggest body portions characterized by different colors (corresponding
to t-shirt/pants or suit/legs, for example).

The other x-axis of asymmetry is positioned at height iHT , obtained as:

iHT = argmin
i

(−S(i,δ )) . (4)

This asymmetry axis separates regions that strongly differ in area and places iHT
between head and shoulders. The search for iHT is limited in the interval [δ , iT L−δ ].

The values iHT and iT L isolate three regions Rk, k = {0,1,2}, approximately
corresponding to head, body and legs, respectively (see Fig. 3). The head part R0
is discarded, because it often consists in few pixels, carrying very low informative
content.

At this point, for each part Rk, k = {1,2}, a (vertical) symmetry axis is estimated,
in order to individuate the areas that most probably belong to the human body, i.e.,
pixels near the symmetry axis. In this way, the risk of considering background clutter
is minimized.

On both R1 and R2, the y-axis of symmetry is estimated in jLRk, (k = 1,2), ob-
tained using the following operator:

jLRk = argmin
j

C( j,δ )+S( j,δ ). (5)

This time, C is evaluated on the foreground region of the size of the height Rk timing
the width δ (see Fig. 3). We look for regions with similar appearance and area. In
this case, δ is proportional to the image width, and it is fixed to J/4.

In Fig. 2, different individuals are taken in different shots. As one can observe,
our subdivision segregates correspondent portions independently on the assumed
pose and the adopted resolution.
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3.4 Accumulation of Local Features

Different features are extracted from the detected parts R1 and R2 (torso and legs,
respectively). The goal is to extract as much complementary information as possible
in order to encode heterogeneous information of the individuals. Each feature is
extracted by considering its distance with respect to the vertical axes. The basic
idea is that locations far from the symmetry axis belong to the background with
higher probability. Therefore, features coming from those areas have to be either a)
weighted accordingly or b) discarded.

Considering the literature in human appearance modeling, features may be
grouped by considering the kind of information to focus on, that is, chromatic (his-
tograms), region-based (blobs), and edge-based (contours, textures) information.
Here, we consider a feature for each aspect, showing later their importance (see
Fig. 4(c-e) for a qualitative analysis of the feature for the SDALF descriptor).

(a) (b) (c) (d) (e)

Fig. 4 Sketch of the SDALF descriptor for single-shot modality. (a) Given an image or a set of
images, (b) SDALF localizes meaningful body parts. Then, complementary aspects of the human
body appearance are extracted: (c) weighted color histogram, the values accumulated in the his-
togram are back-projected into the image to show which colors of the image are more important.
(d) Maximally Stable Color Regions [18] and (e) Recurrent Highly Structured Patches. The objec-
tive is to correctly match SDALF descriptors of the same person (first column vs sixth column).

Weighted Color Histograms (WCH)

The chromatic content of each part of the pedestrian is encoded by color histograms.
We evaluate different color spaces, namely, HSV, RGB, normalized RGB (where
each channel is normalized by the sum of all the channels), per-channel normalized
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RGB [2], and CIELAB. Among these, HSV has been shown to be superior and
also allows an intuitive quantization against different environmental illumination
conditions and camera acquisition settings.

We define weighted color histograms of the foreground regions that take into
consideration the distance to the vertical axes. In particular, each pixel is weighted
by a one-dimensional Gaussian kernel N (µ,σ), where µ is the y-coordinate of
jLRk, and σ is a priori set to J/4. The nearer a pixel is to jLRk, the more important
it will be. In the single-shot case, a single histogram for each part is built. Instead,
in the multiple-shot case, as M instances, all the M histograms for each part are
considered during matching (see Section 4).

The advantage of using the weighted histogram is that in practice the person seg-
mentation algorithm is prone to error especially in the contour of the silhouette. The
weighted histogram is able to reduce the noise of the masks that contain background
pixels wrongly detected as foreground.

Maximally Stable Color Regions (MSCR)

The MSCR operator1 [18] detects a set of blob regions by looking at successive steps
of an agglomerative clustering of image pixels. Each step clusters neighboring pixels
with similar color, considering a threshold that represents the maximal chromatic
distance between colors. These maximal regions that are stable over a range of steps
represent the maximally stable color regions of the image. The detected regions are
then described by their area, centroid, second moment matrix and average RGB
color, forming 9-dimensional patterns. These features exhibit desirable properties
for matching: covariance to adjacency, preserving transformations and invariance
to scale changes, and affine transformations of image color intensities. Moreover,
they show high repeatability, i.e., given two views of an object, MSCRs are likely to
occur in the same correspondent locations.

In the single-shot case, we extract MSCRs separately from each part of the pedes-
trian. In order to discard outliers, we select only MSCRs that lie inside the fore-
ground regions. In the multiple-shot case, we opportunely accumulate the MSCRs
coming from the different images by employing a Gaussian clustering procedure
[17], which automatically selects the number of components. Clustering is carried
out using the 5-dimensional MSCR sub-pattern composed by the centroid and the
average RGB color of each blob. We cluster the blobs similar in appearance and
position, since they yield redundant information. The contribution of the clustering
is twofold: i) it captures only the relevant information, and ii) it keeps low the com-
putational cost of the matching process, when the clustering results are used. The
final descriptor is built by a set of 4-dimensional MSCR sub-pattern composed by
the y coordinate and the average RGB color of each blob. Please note that x coordi-
nates are discarded because they are strongly dependent on the pose and viewpoint
variation.

1 Code available at http://www2.cvl.isy.liu.se/˜perfo/software/.
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Recurrent High-Structured Patches (RHSP)

This feature was designed in [14], taking inspiration from the image epitome [26].
The idea is to extract image patches that are highly recurrent in the human body fig-
ure (see Fig. 5). Differently from the epitome, we want to take into account patches
that are 1) informative, and 2) that can be affected by rigid transformations. The first
constraint selects only those patches that are informative in an information theoretic
sense. Inspired by [51], RHSP uses entropy to select textural patches with strong
edges. The higher the entropy is, the more likely it is to have a strong texture. The
second requirement takes into account that the human body is a 3D entity whose
parts may be captured with distortions, depending on the pose. For simplicity, we
modeled the human body as a vertical cylinder. In these conditions, the RHSP gen-
eration consists in three phases.

The first step consists in the random extraction of patches p of size J/6× I/6,
independently of each foreground body part of the pedestrian. In order to take the
vertical symmetry into consideration, we mainly sample the patches around the jLRk
axes, exploiting the Gaussian kernel used for the color histograms computation. In
order to focus on informative patches, we operate a thresholding on the entropy
values of the patches, pruning away patches with low structural information (e.g.,
uniformly colored). This entropy is computed as the sum Hp of the pixel entropy of
each RGB channel. We choose those patches with Hp higher than a fixed threshold
τH ( = 13 in all our experiments). The second step applies a set of transforma-

High-entropy
patches

Transformed
patches LNCC maps Merging and

Thresholding

Clustering

Fig. 5 Recurrent high-structured patches extraction.

tions Ti, i = 1,2, . . . ,NT on the generic patch p, for all the sampled p’s in order to
check their invariance to (small) body rotations, i.e., considering that the camera
may capture the one’s front, back or side, and supposing the camera is at the face’s
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height. We thus generate a set of NT simulated patches pi, gathering an enlarged set
p̂ = {p1, . . . , pNT , p}.

In the third and final phase, we investigate how much recurrent a patch is. We
evaluate the Local Normalized Cross-Correlation (LNCC) of each patch in p̂ with
respect to the original image. All the NT +1 LNCC maps are then summed together
forming an average map. Averaging again over the elements of the map indicates
how much a patch, and its transformed versions, are present in the image. Thresh-
olding this value (τµ = 0.4) generates a set of candidates RHSP patches. The set of
RHSPs is generated through clustering [17] of the LBP description [37] in order to
capture patches with similar textural content. For each cluster, the patch closer to
each centroid composes the RHSP.

Given a set of RHSPs for each region R1 and R2, the descriptor consists of an
HSV histogram of these patches. We have tested experimentally the LBP descriptor,
but it turned out to be less robust than color histograms. The single-shot and the
multiple-shot methods are similar, with the only difference that in the multi-shot
case the candidate RHSP descriptors are accumulated over different frames.

Please note that, even if we have several thresholds that regulate the feature ex-
traction, they have been fixed once, and left unchanged in all the experiments. The
best values have been empirically selected using the first 100 image pairs of the
VIPeR dataset.

4 Signature Matching

In a general re-id problem two sets of signatures are available: a gallery set A and a
probe set B. Re-id consists in associating the signature PB of each person in B to the
corresponding signature PA of each person in A. The matching mechanism depends
on how the two sets are organized, more specifically, on how many pictures are
present for each individual. This gives rise to three matching philosophies: 1) single-
shot vs. single-shot (SvsS), if each image in a set represents a different individual;
2) multiple-shot vs. single-shot (MvsS), if each image in B represents a different
individual, while in A each person is portrayed in different images, or instances; 3)
multiple-shot vs. multiple-shot (MvsM), if both A and B contain multiple instances
per individual.

In general, we can define re-id as a maximum log-likelihood estimation problem.
More specifically, given a probe B matching is carried out by:

A∗ = argmax
A

(
logP(PA|PB)

)
= argmin

A

(
d(PA,PB)

)
(6)

where the equality is valid because we define P(PA|PB) in Gibbs form P(PA|PB)

= e−d(PA,PB) and d(PA,PB) measures the distance between two descriptors.
The SDALF matching distance d is defined as a convex combination of the local

features:
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d(PA,PB) = ∑
f∈F

β f ·d f ( f (PA), f (PB)) (7)

where the F = {WCH,MSCR,RHSP} is the set of the feature extractors, and β s are
normalized weights.

The distance dWCH considers the weighted color histograms. In the SvsS case, the
HSV histograms of each part are concatenated channel by channel, then normalized,
and finally compared via Bhattacharyya distance [28]. Under the MvsM and MvsS
policies, we compare each possible pair of histograms contained in the different
signatures, keeping the lowest distance.

For dMSCR, in the SvsS case, we estimate the minimum distance of each MSCR
element b in PB to each element a in PA. This distance is defined by two components:
dab

y , which compares the y component of the MSCR centroids; the x component is
ignored, in order to be invariant with respect to body rotations. The second com-
ponent is dab

c , which compares the MSCR color. In both cases, the comparison is
carried out using the Euclidean distance.

The two components are combined as:

dMSCR = ∑
b∈PB

min
a∈PA

γ ·dab
y +(1− γ) ·dab

c (8)

where γ takes values between 0 and 1. In the multi-shot cases, the set PA becomes a
subset of blobs contained in the most similar cluster to the MSCR element b.

The distance dRHSP is obtained by selecting the best pair of RHSPs, one in PA and
one in PB, and evaluating the minimum Bhattacharyya distance among the RHSP’s
HSV histograms. This is done independently for each body part (excluding the
head), summing up all the distances achieved, and then normalizing for the num-
ber of pairs.

In our experiments, we fix the values of the parameters as follows: βWCH = 0.4,
βMSCR = 0.4, βRHSP = 0.2 and γ = 0.4. These values are estimated by cross validat-
ing over the first 100 image pairs of the VIPeR dataset, and left unchanged for all
the experiments.

4.1 Analysis

The signature of SDALF and its characteristics for both the single-shot and multi-
shot descriptors are summarized in Table 2. The second column reports which fea-
ture the basic descriptor is constructed from. The third and forth columns show the
encoding used as description and the distance used in the matching module, respec-
tively, in the case of the single-shot version of SDALF. The last two columns report
the same information for the multi-shot version.

Please note that even though the encoding of each descriptor is based on the color
component, the way in which they are constructed is completely different. There-
fore, the descriptors give a different mode/view of the same data. Color description
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has revealed one of the most useful features in appearance-based person re-id that
usually gives the main contribution in terms of accuracy.

Single-shot Multi-shot
Construction Cue Encoding Distance Encoding Distance

WCH Color HSV hist. per region Bhattacharyya Accumulate Min over distance pairs
MSCR Color RGB color + y position per blob Eq. 8 Clustering Eq. 8 using clusters
RHSP Texture HSV hist. per recurrent patch Bhattacharyya Accumulate Min over distance pairs

Table 2 Summary of the characteristics of SDALF.

In terms of computational speed2, we evaluate how long the computation of the
descriptor and the matching phase (Eq. 7) take in average on images of size 48×
128. Partitioning of the silhouette in (a-)symmetric parts takes 56 milliseconds per
image. SDALF is then composed by three descriptors WCH, MSCR and RHSP that
take 6, 31 and 4843 milliseconds per image, respectively. It is easy to note that the
actual bottleneck of the computation of SDALF is the RHSP. Matching is performed
independently for each descriptor and it takes less that 1 millisecond per pair of
images for WCH and RHSP and 4 milliseconds per image for MSCR. In terms of
computational complexity, the computation of the SDALF descriptor is linear in the
number of images, while the matching phase is quadratic.

5 SDALF for Tracking

In tracking, a set of hypotheses of the object position on the image are analyzed at
each frame, in order to find the one which best fits the target appearance, i.e., the
template. The paradigm is different from the classical re-id: the gallery set is now
the hypothesis set, which is different for each target. And the goal is to distinguish
the target from the background and from the other visible targets. The problem of
tracking shares some aspects with re-id: for example, the background can be hardly
discernible from the background. Another example is when people are relatively
close to each other in the video. In that case, hypotheses of a person position may
go to the background or the wrong person. A descriptor specifically created for re-id
better handles these situations.

The goal of tracking is thus to perform a soft matching, i.e., compute the likeli-
hood between the probe set (the target template) and the gallery set (the hypothesis
set) without performing hard matching, like in re-id.

In this section, we briefly describe particle filtering for tracking (Sec. 5.1) and
we exploit SDALF as appearance model (Sec. 5.2).

2 The following values have been computed using our non-optimized MATLAB code on a quad-
core Intel Xeon E5440, 2.83 GHz with 30 GB of RAM.
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5.1 Particle Filter

Particle filter offers a probabilistic framework for recursive dynamic state estimation
[12] that fits the tracking problem. The goal is to determine the posterior distribution
p(xt |z1:t), where xt is the current state, zt is the current measurement, and x1:t and
z1:t are the states and the measurements up to time t, respectively. The Bayesian
formulation of p(xt |z1:t) enable us to rewrite the problem as:

p(xt |z1:t) ∝ p(zt |xt)
∫

xt−1

p(xt |xt−1)p(xt−1|z1:t−1)dxt−1. (9)

Particle Filter is fully specified by an initial distribution p(x0), a dynamical model
p(xt |xt−1), and an observation model p(zt |xt). The posterior distribution at pre-
vious time p(xt−1|z1:t−1) is approximated by a set of S weighted particles, i.e.
{(x(s)t−1,w

(s)
t−1)}S

s=1, because the integral in Eq. 9 is often analytically intractable.
Equation 9 can be rewritten by its Monte Carlo approximation:

p(xt |z1:t)≈
S

∑
s=1

w(s)
t δ (xt − x(s)t ). (10)

where

w(s)
t ∝ w(s)

t−1
p(zt |x(s)t ) p(x(s)t |x(s)t−1)

q(x(s)t |x(s)t−1,zt)
(11)

where q is called proposal distribution. The design of an optimal proposal distribu-
tion is a critical task. A common choice is q(x(n)t |x(n)t−1,zt) = p(x(n)t |x(n)t−1) because it

simplifies equation (11) in w(n)
t ∝ w(n)

t−1 p(zt |x(n)t ). However, this is not an optimal
choice. We can make use of the observation zt in order to propose particles in more
interesting regions of the state space. As in [38], detections are used in the proposal
distribution to guide tracking and make it more robust.

Given this framework, tracking consists of observing the image zt at each time t
and updating the distribution over the state xt by propagating particles as in Eq. 11.

5.2 SDALF as Observation Model

The basic idea is to propose a new observation model p(zt |x(s)t ) so that the ob-
ject representation is made up by the SDALF descriptor. We define the observation
model considering the distance defined in Eq. 7: d(PA|PB) := d(x(s)t (zt),τt), where
PB becomes the object template τt made by SDALF descriptors, and PA is the cur-
rent hypothesis x(s)t . Minimization of Eq. 6 over the gallery set elements is not per-
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formed for tracking. Instead, the probability distribution over the hypotheses is kept
in order to approximate Eq. 9.

Some simplifications are required when embedding SDALF into the proposed
tracking framework. First of all, since the descriptor has to be extracted for each
hypothesis x(s)t , it should be reasonably efficient to compute. In our current imple-
mentation, the computation of RHSP for each particle is not feasible as the trans-
formations Ti performed on the original patches to make the descriptor invariant to
rigid transformations constitute a too high burden. Therefore, the RHSP is not used
in the descriptor.

The observation model becomes:

p(zt |x(s)t ) = e−D(x(s)t (zt ),τt ), D(x(s)t (zt),τt) = ∑
f∈FR

β f ·d f ( f (x(s)t ), f (τt)) (12)

where x(s)t is the hypothesis extracted from the image zt , and τt is the template of
the object and FR = {WCH,MSCR}. During tracking, the object template has to be
updated in order to model the different aspects of the captured object (for example,
due to different poses). Therefore, τt is composed by a set of images accumulated
over time (previous L frames). Then, in order to balance the number of images em-
ployed for building the model and the computational effort required, N = 3 images
are randomly selected at each time step to form PA.

6 Experiments

In this section, an exhaustive analysis of SDALF for re-identification and tracking is
presented. SDALF is evaluated on the re-id task against the state-of-the-art methods
in Section 6.1. Then, it is evaluated on a tracking scenario in Section 6.2.

6.1 Results: Re-identification

In literature, several different datasets are available: VIPeR3 [20], iLIDS for re-id
[54], ETHZ4 1, 2, and 3 [47], and the more recent CAVIAR4REID5 [9]. These
datasets cover challenging aspects of the person re-id problem, such as shape de-
formation, illumination changes, occlusions, image blurring, very low resolution
images, etc.

3 Available at http://users.soe.ucsc.edu/˜dgray/VIPeR.v1.0.zip
4 Available at http://www.liv.ic.unicamp.br/˜wschwartz/datasets.html
5 Available at http://www.lorisbazzani.info/code-datasets/caviar4reid/
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Datasets. The VIPeR dataset [20] contains image pairs of 632 pedestrians nor-
malized to 48× 128 pixels. It represents one of the most challenging single-shot
datasets currently available for pedestrian re-id.

The ETHZ dataset [47] is captured from moving cameras in a crowded street and
contains three sub-datasets: ETHZ1 with 83 people (4.857 images), ETHZ2 with 35
people (1.936 images), and ETHZ3 contains 28 with (1.762 images). ETHZ does
not represent a genuine re-id scenario (no different cameras are employed), and it
still carries important challenges not exhibited by other public datasets, as the big
number of images per person.

The iLIDS for re-id [54] dataset is composed by 479 images of 119 people ac-
quired from non-overlapping cameras. However, iLIDS does not fit well in a multi-
shot scenario because the average number of images per person is 4, and thus some
individuals have only two images. For this reason, we also created a modified ver-
sion of the dataset of 69 individuals, named iLIDS≥4, where we selected the subset
of individuals with at least 4 images.

The CAVIAR4REID dataset [9] contains images of pedestrians extracted from
the shopping center scenario of the CAVIAR dataset6. The ground truth of the se-
quences was used to extract the bounding box of each pedestrian, resulting in a
set of 10 images of 72 unique pedestrians: 50 with the two camera views and 22
with one camera view. The main differences of CAVIAR4REID with respect to the
already-existing datasets for re-id are: 1) it has broad changes of resolution, and the
minimum and maximum size of the images contained on CAVIAR4REID dataset
are 17×39 and 72×144, respectively. 2) Unlike ETHZ, it is extracted from a real
scenario where re-id is necessary due to the presence of multiple cameras and 3)
pose variations are severe. 4) Unlike VIPeR, it contains more than one image for
each view. 5) It contains all the images variations of the other datasets.

Evaluation Measures. State-of-the-art measurements are used in order to com-
pare the proposed methods with the others: the Cumulative Matching Characteristic
(CMC) curve represents the expectation of finding the correct match in the top n
matches and the normalized Area Under the Curve (nAUC) is the area under the
entire CMC curve normalized over the total area of the graph. We compare the
proposed method with some of the best re-id methods on the available datasets: En-
semble of Localized Features (ELF) [21] and Primal-based Rank-SVM (PRSVM)
[41] in VIPeR, Partial Least Squares (PLS) by [47] in ETHZ, Context-based re-id
[54] and Spatial Covariance Region (SCR) [2] in iLIDS.

Results. Considering first the VIPeR dataset, we define CAM B as the gallery set,
and CAM A as the probe set; each image of the probe set is matched with the images
of the gallery. This provides a ranking for every image in the gallery with respect
to the probe. We followed the same experimental protocol of [21]. In this work,
the dataset is split evenly into a training and a test set, and matching is performed.
In both algorithms a set of few random permutations are performed (5 runs for
PRSVM, 10 runs for ELF), and the averaged score is kept. In order to fairly compare

6 Available at http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/
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SDALF, s=1 (92.24)

SDALF, s=3/4 (90.53)

SDALF, s=1/2 (90.01)

SDALF, s=1/3 (88.47)

SDALF, s=1/4 (86.78)

(a) 316 ped. (b) 474 ped. (c) scale, 316 ped.

Fig. 6 Performances on the VIPeR dataset in terms of CMC and nAUC (within brackets). In (a)
and (b), comparative profiles of SDALF against ELF [21] and PRSVM [41] on the 316-pedestrian
dataset and the 474-pedestrian dataset, respectively. In (c), SDALF at different scales.

our results with theirs, we should know precisely the splitting assignment. Since this
information is not provided we compare the existent results with the average of the
results obtained by our method for 10 different random sets of 316 pedestrians and
474 pedestrians. In Fig. 6, we depict a comparison among ELF, PRSVM and SDALF
in terms of CMC curves. We provided also the nAUC score for each method (within
brackets in the legend of the plots of Fig. 6). Considering the experiment on 316
pedestrians (Fig. 6(a)), SDALF outperforms ELF in terms of nAUC, and we obtain
comparable results with respect to PRSVM. Even if PRSVM is slightly superior
to SDALF, one can note that the differences between it and SDALF are negligible
(less than 0.12%). This is further corroborated looking at the different philosophy
underlying the PRSVM and our approach. In the former case, PRSVM uses the 316
pairs as training set, whereas in our case we act directly on the test images, operating
on each single image as an independent entity. Thus, no learning phase is needed
for our descriptor. In addition, it is worth noting that SDALF slightly outperforms
PRSVM in the first positions of the CMC curve (rank 1− 6). This means that in a
real scenario where only the first ranks are considered, our method performs better.

Fig. 6(b) shows a comparison between PRSVM and SDALF when dealing with
a larger test dataset where a set of 474 individuals has been extracted, as done in
the PRSVM paper. This is further evidence about how the performance of PRSVM
depends on the training set, which is now composed by 158 individuals. In this
case, our approach outperforms PRSVM showing an advantage in terms of nAUC
of about 2.15%.

The last analysis of this dataset is conducted by testing the robustness of SDALF
when the image resolution decreases. We scaled the original images of the VIPeR
dataset by factors s = {1,3/4,1/2,1/3,1/4} reaching a minimum resolution of
12× 32 pixels (Fig. 2 on the right). The results, depicted in Fig. 6, show that the
performance decreases, as expected, but not drastically. nAUC slowly drops down
from 92.24% at scale 1 to 86.78% at scale 1/4.

Now let us analyze the results on iLIDS dataset. We reproduce the same experi-
mental settings of [54] in order to make a fair comparison. We randomly select one
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N = 1

(a) (b) (c)

Fig. 7 Performances on iLIDS dataset. (a) CMC curves comparing Context-based re-id [54], SCR
[2] and single-shot SDALF. (b) Analysis of SDALF performance at different resolutions. (c) CMC
curves for MvsS and MvsM cases varying the average number of images N for each pedestrian.
For reference, we put also the single-shot case (N = 1). In accordance with what reported by [54],
only the first 25 ranking positions of the CMC curves are displayed.

image for each pedestrian to build the gallery set, while the others form the probe
set. Then, the matching between probe and gallery set is estimated. For each image
in the probe set the position of the correct match is obtained. The whole procedure
is repeated 10 times, and the average CMC curves are displayed in Fig. 7.

SDALF outperforms the Context-based method [54] without using any addi-
tional information about the context (Fig. 7(a)) even using images at lower reso-
lution (Fig. 7(b)). The experiments of Fig. 7(b) show SDALF when scaling factors
are s = {1,3/4,1/2,1/3,1/4,1/6} with respect to the original size of the images,
reaching a minimum resolution of 11×22 pixels. Fig. 7(a) shows that we get lower
performance with respect to SCR [2]. Unfortunately, it has been impossible to test
SCR on low resolution images (no public code available), but since it is based on
covariance of features we expect that second order statistics on very few values may
be uninformative and not significant.

Concerning the multiple-shot case, we run experiments on both MvsS and MvsM
cases. In the former trial, we built a gallery set of multi-shot signatures and we
matched it with a probe set of one-shot signatures. In the latter, both gallery and
probe sets are made up of multi-shot signatures. In both cases, the multiple-shot
signatures are built from N images of the same pedestrian randomly selected. Since
the dataset contains an average of about 4 images per pedestrian, we tested our algo-
rithm with N = {2,3} for MvsS, and just N = 2 for MvsM running 100 independent
trials for each case. It is worth noting that some of the pedestrians have less than 4
images, and in this case, we simply build a multi-shot signature composed by less
instances. In the MvsS strategy, this applies to the gallery signature only, and in the
MvsM signature, we start by decreasing the number of instances that compose the
probe signature, leaving unchanged the gallery signature; once we reach just one
instance for the probe signature, we start decreasing the gallery signature too. The
results, depicted in Fig. 7(c), show that, in the MvsS case, just 2 images are enough
to increment the performance by about 10% and to outperform the Context-based
method [54] and SCR [2]. Adding another image induces an increment of 20% with
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respect to the single-shot case. It is interesting to note that the results for MvsM lie
in between these two figures.
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Fig. 8 Performances on ETHZ dataset. Left column, results on SEQ. #1; middle column, on
SEQ. #2; right column, on SEQ. #3. We compare our method with the results of PLS [47]. On
the top row, we report the results for single-shot SDALF (N = 1) and MvsS SDALF; on the bot-
tom row, we report the results for MvsM SDALF. In accordance with [47], only the first 7 ranking
positions are displayed.

In ETHZ dataset, PLS [47] produces the best performance. In the single-shot
case, the experiments are carried out exactly as for iLIDS. The multiple-shot case
is carried out considering N = 2,5,10 for MvsS and MvsM, with 100 indepen-
dent trials for each case. Since the images of the same pedestrian come from video
sequences, many are very similar and picking them for building the multi-shot sig-
nature would not provide new useful information about the subject. Therefore, we
apply the clustering procedure discussed in Section 3.1.

The results for both single and multiple-shot cases for SEQ. #1 are reported on
Fig. 8, and we compare the results with those reported by [47]. In SEQ. #1 we do
not obtain the best results in the single-shot case, but adding more information to
the signature we can get up to 86% rank 1 correct matches for MvsS and up to
90% for MvsM. We think that the difference with PLS is due to the fact that PLS
uses all foreground and background information, while we use only the foreground.
Background information helps here because each pedestrian is framed and tracked
in the same location, but it is not valid in general in a multi-camera setting.

In SEQ. #2 (Fig. 8) we have a similar behavior: rank 1 correct matches can be
obtained in 91% of the cases for MvsS, and in 92% of the cases for MvsM. The
results for SEQ. #3 show instead that SDALF outperforms PLS even in the single-
shot case. The best performance as to rank 1 correct matches is 98% for MvsS and
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94% for MvsM. It is interesting to note that there is a point after that adding more
information does not enrich the descriptive power of the signature any more. N = 5
seems to be the correct number of images to use.

Results: AHPE. To prove that the ideas introduced by SDALF should be used in
combination with other descriptors, we modified the Histogram Plus Epitome (HPE)
descriptor of [6]. HPE is made by two parts: color histograms accumulated over time
in the same spirit of SDALF, and the epitome to describe local recurrent motifs. We
extended HPE to Asymmetry HPE (AHPE) [6], where HPE is extracted from ( a-
)symmetric parts in the same partition method used by SDALF. The quantitative
evaluation of HPE and AHPE considers the six multi-shot datasets: ETHZ 1, 2, and
3, iLIDS for re-id, iLIDS≥4, and CAVIAR4REID.

1 2 3 4 5 6 7
75

80

85

90

95

100
CMC ETHZ1

 

 

SDALF

PLS

HPE

AHPE

1 2 3 4 5 6 7
70

80

90

100

CMC ETHZ2

 

 

PLS

SDALF

HPE

AHPE

1 2 3 4 5 6 7
75

80

85

90

95

100
CMC ETHZ3

 

 

PLS

SDALF

HPE

AHPE

Fig. 9 Comparisons on ETHZ 1,2,3 between AHPE (blue), HPE (green), SDALF (black), PLS
[47] (red). For the multi-shot case we set N = 5.

A comparison between different state-of-the-art methods in the multi-shot setup
(N = 5), HPE and AHPE descriptor is shown in Fig. 9. On ETHZ, AHPE gives
the best results, showing consistent improvements on ETHZ1 and ETHZ3. On
ETHZ2, AHPE gives comparable results with SDALF, since the nAUC is 98.93%
and 98.95% for AHPE and SDALF, respectively. Note that if we remove the image
selection step (used for ETHZ), the performance decreases of 5% in terms of CMC,
because the intra-variance between images of the same individual is low, and thus
the multi-shot mode does not gain new discriminative information.

On iLIDS (Fig. 10, left), AHPE is outperformed only by SDALF. This witnesses
again the fact, explained in the previous experiment, that the epitomic analysis
works very well when the number of instances is appropriate (say, at least N = 5).
This statement is clearer by the experiments on iLIDS≥4 and CAVIAR4REID
(Fig. 10, last two columns). Especially, if we remove from iLIDS the instances with
less than 4 images, then AHPE outperforms SDALF (Fig. 10, center). The evalua-
tion on CAVIAR4REID (Fig. 10, right) shows that: 1) the accuracy increases with N,
and 2) the real, worst-case scenario of re-id is still a very challenging open problem.
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Fig. 10 Comparisons on iLIDS (first column), iLIDS≥4 (second column) and CAVIAR4REID
(third column) between AHPE (blue), HPE (green, only iLIDS), SDALF (black), SCR [2] (ma-
genta, only iLIDS), and context-based [54] (red, only iLIDS). For iLIDS and iLIDS≥4 we set
N = 2. For CAVIAR4REID, we analyze different values for N. Best viewed in colors.

6.2 Results: Tracking

As benchmark, we adopt CAVIAR, as it represents a challenging real tracking sce-
nario, due to pose, resolution and illumination changes, and severe occlusions. The
dataset consists of several sequences along with the ground truth captured in the
entrance lobby of the INRIA Labs and in a shopping center in Lisbon. We select the
shopping center scenario, because it mirrors a real situation where people move in
the scene. The shopping center dataset is composed by 26 sequences recorded from
two different points of view, at the resolution of 384× 288 pixels. It includes indi-
viduals walking alone, meeting with others, window shopping, entering and exiting
shops.

We aim to show the capabilities of SDALF as appearance descriptor in a multi-
person tracking case. We use the particle filtering approach described in Sec. 5,
since it represents a general tracking engine employed by many algorithms. As pro-
posal distribution, we use the already-trained person detector [15] in the same way
exploited by the boosted particle filter [38]. For generating new tracks, weak tracks
(tracks initialized for each not associated detection) are kept in memory, and it is
checked whether they are supported continuously by a certain amount of detections.
If this happens, the tracks are initialized [8].

The proposed SDALF-based observation model is compared against two classi-
cal appearance descriptors for tracking: joint HSV histogram and part-based HSV
histogram (partHSV) [24] where each of three body parts (head, torso, legs) are
described by a color histogram.

The quantitative evaluation of the method is provided by adopting the metrics
presented in [29]7:

• Average Tracking Accuracy (ATA): measures penalizing fragmentation phenom-
ena in both the temporal and spatial dimensions, while accounting for the number
of objects detected and tracked, missed objects, and false positives;

7 For the sake of fairness, we use the code provided by the authors. For the metric ATA, we use the
association threshold suggested by the authors (0.5).
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Table 3 Quantitative comparison between object descriptors: SDALF, part-based HSV histogram
and HSV histogram; the performance are given in terms of the number of tracks estimated (# Est.)
vs. the number of tracks in the ground truth (# GT), Multi-Object Tracking Precision (MOTP) and
Multi-Object Tracking Accuracy (MOTA).

# Est. # GT ATA MOTP MOTA
SDALF 300 235 0.4567 0.7182 0.6331
partHSV 522 235 0.1812 0.5822 0.5585
HSV 462 235 0.1969 0.5862 0.5899

• Multi-Object Tracking Precision (MOTP): considers the spatio-temporal overlap
between the reference tracks and the tracks produced by the test method.

• Multi-Object Tracking Accuracy (MOTA): considers missed detections, false
positives, and ID switches by analyzing consecutive frames.

For more details, please refer to the original paper [29]. In addition, we provide also
an evaluation in terms of:

• the number of tracks estimated by our method (# Est.) vs. the number of tracks in
the ground truth (# GT): an estimate of how many tracks are wrongly generated
(for example, because weak appearance models cause tracks drifting).

The overall tracking results averaged over all the sequences are reported in Ta-
ble 3. The number of estimated tracks using SDALF is closer to the correct number
than partHSV and HSV. Experimentally, we noted that HSV and partHSV fail very
frequently in the case of illumination, pose, and resolution changes and partial oc-
clusions. In addition, several tracks are frequently lost and then re-initialized.

Considering the temporal consistency of the tracks (ATA, MOTA, and MOTP),
wa can notice that SDALF definitely outperforms HSV and partHSV. The values of
ATA are not so high, because track fragmentation is frequent. This is due to the fact
that the tracking algorithm does not explicitly cope with complete occlusions. ATA
shows that SDALF gives the best results. This experiment promotes SDALF as an
accurate person descriptor for tracking, able to manage the natural noisy evolution
of the appearance of people.

7 Conclusions

In this chapter, we presented a pipeline for re-identification and a robust symmetry-
based descriptor for modeling the human appearance. SDALF relies on perceptually
relevant parts localization driven by asymmetry/symmetry principles. It consists of
three features that encode different information, namely, chromatic and structural in-
formation, as well as recurrent high-entropy textural characteristics. In this way, ro-
bustness to low resolution, pose, viewpoint and illumination variations is achieved.
SDALF was shown to be versatile, being able to work using a single image of a per-
son (single-shot modality), or several frames (multiple-shot modality). Moreover,
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SDALF was also showed to be robust to very low resolutions, maintaining high
performance up to 11×22 windows size.
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