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Abstract

We propose a novel methodology for re-identification, based on Pictorial Structures
(PS). Whenever face or other biometric information is missing, humans recognize an
individual by selectively focusing on the body parts, looking for part-to-part correspon-
dences. We want to take inspiration from this strategy in a re-identification context, using
PS to achieve this objective. For single image re-identification, we adopt PS to localize
the parts, extract and match their descriptors. When multiple images of a single individ-
ual are available, we propose a new algorithm to customize the fit of PS on that specific
person, leading to what we call a Custom Pictorial Structure (CPS). CPS learns the ap-
pearance of an individual, improving the localization of its parts, thus obtaining more
reliable visual characteristics for re-identification. It is based on the statistical learning
of pixel attributes collected through spatio-temporal reasoning. The use of PS and CPS
leads to state-of-the-art results on all the available public benchmarks, and opens a fresh
new direction for research on re-identification.

1 Introduction
Human re-identification (re-id) consists in recognizing a person in different locations over
various non-overlapping camera views. It is commonly assumed that individuals do not
change their clothing within the observation period, and that finer biometric cues (face, fin-
gerprint, gait) are unavailable. We consider here the appearance-based re-id, i.e., we exploit
solely the appearance of the body. Re-id is an important problem: it has been the focus of
intense research in the last five years, due to the distribution of challenging datasets (VIPeR
[14], iLIDS Multi Camera Tracking Scenario [17], ETHZ [7]), but its roots lie farther back,
in object model design for human tracking [25]. It is also pervasive, extending from the
original video-surveillance field to the most recent photo-tagging domain [23].
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(b)(a) (c)

Figure 1: Re-id performed by a human subject: (a) the test probe we asked to match; (b) the
correct match in the gallery; (c) the fixation heat maps from eye-tracking over consecutive
1s intervals - the hotter the color, the longer the time spent looking at that area.

In this paper, we present a novel methodology for human re-id, based on Pictorial Struc-
tures (PS) for human body pose estimation. PS essentially rely on two components: one
capturing the local appearance of body parts, and the other representing an articulated body
structure [9]. Inference in a PS involves finding the MAP spatial configuration of the parts,
i.e., the body pose. We build upon the PS framework of [1], where general part detectors
localize the body parts, and a kinematic tree prior captures the structural knowledge.

Our proposal takes inspiration from how humans perform re-id, assuming they operate
under the same hypotheses described at the beginning of this section. Taking a subset of the
VIPeR dataset (45 pedestrians), we set up a simple re-id experiment where subjects were
asked to match test probes to candidate galleries (5×2 cm each, pooled together in a single
screen), while being monitored with an eye-tracker system (SMI Red 120Hz). This allowed
us to obtain fixation heat maps, showing where the subjects concentrated their attention. As
shown in Fig. 1 for a particular trial, the fixation maps indicate a tendency to scan salient
parts of the body, looking for part-to-part correspondences. We think that encoding and ex-
ploiting the human appearance per parts is a convenient strategy for re-id, and PS are the
best tool for this task. PS are usually fitted on individual images, as independent entities,
and we exploit this setting for single-shot re-id, which consists in matching pairs of images,
a probe and a gallery image for each subject. After fitting a PS on all images, from each
localized part we extract an ensemble of features, encoding complementary aspects, such as
the chromatic content and the spatial arrangement of colors. The first aspect is captured by
HSV histograms, while the second aspect is codified by Maximally Stable Color Regions
(MSCR) [11], previously adopted for re-id in [8]. The features of each part are subsequently
combined into a single ID signature. Matching between signatures is carried out by standard
distance minimization strategies. On the other hand, multi-shot re-id occurs when each sub-
ject has multiple images, either in the gallery and/or the probe set, which can be exploited
to accumulate more visual information and ensure higher re-id accuracy. In this case, we
propose a strategy to improve the PS fitting on images of the same subject. This task has re-
ceived little attention in the literature, like [21], where a large number of consecutive images
per person was used, whereas a re-id task often provides only few (2-5) non-consecutive
images. Our idea is to learn the local appearance of each part in a given subject so that ad-
hoc appearance part detectors can provide more accurate PS fitting. The detectors we used
are multidimensional Gaussian filters capturing the appearance of every pixel in each part.
Moreover, chances of bad learning due to the scarcity of samples per person is mitigated by
employing spatial reasoning, i.e., by augmenting the statistics of a pixel with similar neigh-
boring pixel values in a surrounding region, identified through non-parametric Mean Shift
segmentation [5]. We have called this new model Custom Pictorial Structure (CPS). Once
CPS is fitted on data, features are extracted from each instance as in the single-shot case,
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Figure 2: Taxonomy of re-identification methods.
and the individual signatures are pooled together to obtain a multi-shot ID signature. The
matching policy between multi-shot signatures is based on finding, among the individual
signatures of the compared individuals, the pair whose distance is minimal.

Summarizing, in this paper we propose:
• the adoption of PS for single-shot re-id, and appropriate per-part feature extractors;
• a novel fitting strategy for PS, specifically suited for few, non-consecutive images of

the same subject, and a strategy for matching multi-shot signatures.
Experiments have been carried out on all the available re-id datasets (iLIDS, ETHZ1,2,3,

VIPeR) with convincing results in all modalities and outright best performances in the multi-
shot case. Moreover, we created a novel dataset starting from the CAVIAR tracking data1,
presenting a unique combination of challenges. We finally evaluate our method against the
human capability of re-id on a subset of the VIPeR dataset.

The paper is organized as follows. Sec. 2 analyzes related work, which lies both in the PS
and and in the re-id literature. Our approach is detailed in Sec. 3, and the related experiments
are discussed in Sec. 4. Finally, Sec. 6 wraps up with remarks and future perspectives.

2 State of the art
Pictorial structures. The literature on PS is large and multifaceted. Here, we briefly re-
view the studies that focus on the appearance modeling of body parts. We can distinguish
two types of approaches: the single-image and multiple-image methods. In the former case,
a PS processes each image individually. In [20], a two-step image parsing procedure is pro-
posed, that enriches an edge-based model by adding chromatic information. In [6], a learning
strategy estimates relations between body parts and a shared color-based appearance model
is used to deal with occlusions. In the other case, several images representing a single person
are available. Very few methods deal with this situation. In [21], two approaches for building
PS have been proposed for tracking applications. A top-down approach automatically builds
people models starting by convenient key poses detections; a bottom-up method groups to-
gether candidate body parts found along the considered sequence exploiting spatio-temporal
reasoning. This technique shares some similarities with our approach, but it requires a high
number of temporally consecutive frames (50-100). In our setting, few (≤5), unordered im-
ages are instead expected. In a photo-tagging context, PS are grown over face detections to
recognize few people [23], modeling the parts with Gaussian distributions in the color space.

Re-identification. A taxonomy of recent appearance-based techniques is shown in Fig. 2,
displaying two groups of methods: learning-based and direct approaches. In the former, a
dataset is split into training and test sets, with the training individuals used to learn features
and/or strategies for combining features to achieve high re-id accuracy, and the test ones used
as validation. Direct methods are instead pure feature extractors. An orthogonal classifica-
tion separates the single-shot and the multi-shot techniques. As learning-based methods, an
ensemble of discriminant localized features and classifiers is selected by boosting in [13]. In
[16], pairwise dissimilarity profiles between individuals are learned and adapted for nearest-
neighbor classification. Similarly, in [22], a high-dimensional signature formed by multiple

1http://www.re-identification.net/
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features is projected onto a low-dimensional discriminant space by Partial Least Squares re-
duction. Contextual visual information is exploited in [26], enriching a bag-of-word-based
descriptor by features derived from neighboring people, assuming that people stay together
across different cameras. [2] casts re-id as a binary classification problem (one vs. all),
while [19] as a relative ranking problem in a higher dimensional feature space where true
and wrong matches become more separable.

As direct methods, a spatio-temporal local feature grouping and matching is proposed in
[12]: a decomposable triangulated graph is built that captures the spatial distribution of the
local descriptions over time. In [24], images are segmented into regions and their color spa-
tial relationship acquired with co-occurrence matrices. In [15], interests points (SURF) are
collected in subsequent frames and matched. Symmetry and asymmetry perceptual attributes
are exploited in [8], based on the idea that features closer to the bodies’ axes of symmetry are
more robust against scene clutter. Covariance features, originally employed for pedestrian
detection, are tailored in [3] for re-id, extracted from coarsely located body parts. In [4], epit-
omic analysis is used to collapse a set of images into a small collage of overlapped patches
containing the essence of textural, shape and appearance properties. To be brief, in addition
to color, a large number of features types is employed for re-id: textures [8, 13, 19, 22],
edges [22], Haar-like features [2], interest points [12] and image regions [8, 13, 24]. The
features, when not collected densely, can be extracted from horizontal stripes, triangulated
graphs, concentric rings [26], symmetry-driven structures [8], and localized patches [3].

Our method lies in the class of the direct approaches, and can work in both single- and
multi-shot modes. As Table 2 shows, our single-shot approach inhabits the poorest informa-
tion corner of this taxonomy, but is still able to perform as well as his richer competitors.

3 The proposed approach
In general, a simple procedure implements our method: we localize body parts using PS; we
extract visual information from them to create an ID signature; finally, signatures of probes
and gallery images are matched and evaluated. In the following, we summarize the basic PS
technique of [1] and describe the single- and multi-shot working modalities of our method.

3.1 Pictorial structures basics
In PS, the body model is decomposed into a set of parts whose configuration is denoted
as L = {lp}N

p=1, where lp = (xp,yp,ϑp,sp) encodes position, orientation and scale of part
p, respectively. Given the image evidence D, the posterior of L is modeled as p(L|D) ∝

p(D|L)p(L), where p(D|L) is the image likelihood and p(L) is a prior modeling the parts
connectivity. The kinematic dependencies between body parts are mapped onto a directed
acyclic graph (DAG) with edges E, giving p(L) = p(l1)∏(i, j)∈E p(li|l j), where l1 is the root
node (the torso), and p(li|l j) models the joint between two connected parts. Meanwhile, the
image evidence D is obtained with discriminatively trained part models, each providing an
evidence map dp. Assuming that all {dp}N

p=1 are conditionally independent given the con-
figuration L, and each part depends only on its own configuration, we factorize the likelihood
in p(D|L) = ∏

N
p=1 p(dp|lp). Thus, the posterior over the configuration L becomes:

p(L|D) ∝ p(l1)
N

∏
p=1

p(dp|lp) ∏
(i, j)∈E

p(li|l j). (1)

The model is trained on a dataset of annotated images, independently for the part detec-
tors and the kinematic prior. In all the following experiments, the learned PS is exclusively
used to efficiently infer the posterior on new images. For further details, see [1].
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3.2 The single-shot modality
In this modality, every image is treated individually. Fitting a PS on a pedestrian image
follows the original framework of [1], where general detectors are used to locate the body
parts. In the following, we choose a body configuration composed by N=6 parts (chest,
head, thigs and legs, as in Fig. 3(a)), which we found out detailed enough to represent upright
pedestrians in frontal/back or side views. See more details in Sec. 4. After fitting the PS,
we consider 1) the per-part chromatic content, and 2) the color displacement within the body
mask. We treat the former aspect by calculating color histograms of each part independently,
and then concatenating and normalizing them into a single feature vector for each image. In
particular, we use a modified HSV characterization [18], where hue and saturation are jointly
taken by a 2D histogram to retain much of the chromatic specificity, and brightness is counted
separately. Also, there is a distinct count for the full black color, to eliminate ill-defined hue
and saturation values at low brightness. Moreover, because parts have different sizes (e.g.,
the torso is about three times larger than the head), we multiply the part histograms with a set
of weights {wp}N

p=1 before the concatenation and normalization. In this way, we ensure the
ability to tune the algorithm to both different size of parts and their importance for the re-id
task. Fine-tuning these parameters can be easily performed through cross-validation, and this
substantially improves the performance since it allows to adapt to different visual conditions
(color saturation, image brightness, body sizes) in the different datasets considered.

Concerning the per-region color displacement, we use the Maximally Stable Color Re-
gion (MSCR)2 operator [11], which detects a set of blob regions by looking at successive
steps of an agglomerative clustering of image pixels. Each step groups neighboring pixels
with similar color within a threshold that represents the maximal chromatic distance between
colors. Those maximal regions that are stable over a range of steps become MSCRs. As ex-
perimentally validated in [8], height and color of these regions are features particularly suited
for re-id. In our approach, we extract the MSCR blobs from within the PS body mask.

The color histograms and the MSCRs ultimately form our desired ID signature. Match-
ing two signatures IA = (HA,MSCRA) and IB = (HB,MSCRB) is carried out by calculating
the distance d as:

d(IA, IB) = βH ·dH(HA,HB)+ (2)
(1−βH) ·dMSCR(MSCRA,MSCRB), (3)

where βH is a calibration parameter, dH is the Bhattacharyya distance, and for dMSCR we
employed the same distance between MSCRs as in [8].

3.3 The multi-shot modality
With multiple images for each subject, each part occurs more times, and we can exploit
this variety to improve the PS fitting. In this case, our goal is to learn a local model that can
capture the appearance of the subjects’ parts, and alter the MAP body configuration estimates
so that the subject is consistently localized across all images, increasing the re-id accuracy.
These ad-hoc part detectors will act jointly with the general-person (GP) detectors of [1].
This Custom PS (CPS) is a two-step iterative process that alternates between estimating the
body configuration and updating the appearance model. Let us assume we are processing
T images of a given subject (Fig. 3(b)): at the first iteration, since we provide an initial
uninformative appearance model, the MAP body estimates will coincide with those of PS,
which is driven by the GP detectors and the kinematic prior alone. We can now collect all

2http://www2.cvl.isy.liu.se/~perfo/software/
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 Iter 2 Iter L (final fit)...
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Figure 3: Our approach. Single-shot PS in (a). Multi-shot CPS at iteration 1: (b) initial PS
fitting; (c) the parts are aligned and per-pixel statistics is collected employing spatio-temporal
reasoning; (d) the ad-hoc part detectors are estimated, whose means µ are shown. At every
iteration until L, the fitting becomes more accurate due to the improving part detectors.

the parts, remove the transformations, and estimate a Gaussian distribution N (µk,σk) for
all pixels k. Whenever T is small, the resulting Gaussian estimates would be poor, very
sensitive to noise. In order to reinforce the statistics, for each pixel location k, we increase
the samples by including spatial neighbors of similar color (Fig. 3(c)) by performing Mean
Shift segmentation [5] on each subimage t and including the neighbors of k that belong to
the same segment. The resulting Gaussian distribution is more robust to noise (Fig. 3(d)).

We now use such robust models to provide evidence maps for each part. By filtering the
image with the Gaussian distributions (efficiently with FFTs), we get likelihood scores for
each possible combination of scale, rotation and position of the parts in the image. At the
next PS step, we fuse the GP and Gaussian scores to provide parts localizations. Among the
many rules for fusion, we found out that selecting the max (per-pixel) gave us good results.

We are aware that employing a single Gaussian works only for rigid parts: it is not a
problem for arms and legs, because clothes often have uniformly colored pants and sleeves.
For the torso and the head, this assumption certainly does not hold as front and back of
the head are very different, like front and back of the torso in the presence of a backpack.
Nevertheless, our approach improves the PS fitting and re-id accuracy rates. Upgrading to
mixture of Gaussians designed through model selection strategies will be surely a future
improvement of CPS. Experimentally, CPS converges after 4-5 iterations, and we can finally
extract ID signatures like in the single-shot case. As for the matching, when we compare M
probe signatures of a given subject against N gallery signatures of another one, we simply
calculate all the possible M×N single-shot distances, and keep the smallest one.

4 Results
We tested our approach on seven datasets: iLIDS, ETHZ1,2, and 3, VIPeR, VIPeR for hu-
mans (VIPeRHuman), and CAVIAR for re-id (CAVIAR4REID). The first five are all the
publicly available benchmarks for re-id, and we additionally promote two new ones: the
VIPeRHuman provides a standard against humans’ ability for re-id, and the CAVIAR4REID
shows several peculiar conditions found separately in the other datasets. This section is
organized in three parts. The first illustrates the common algorithm setup we used in all ex-
periments, the second gives deep insight into our approach on iLIDS, and the third shows our
results on the remaining datasets, Re-id performance is reported in terms of the recognition
rate, via the cumulative matching characteristic (CMC) curve which represents the expecta-
tion of finding the correct match in the top n matches. Also, a quantitative scalar appraisal
of our curves is given by the normalized area under curve (nAUC) value.

4.1 Algorithm setup
The setup of [1] for pedestrian detection does not work well in our scenes. The immediate
differences are in framing and pose: we have images tightly bound around mostly centered
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Figure 4: iLIDS dataset analysis. (a) Single-shot comparison (PS is our approach), with
nAUC values within parentheses. (b) Multi-shot case qualitative and quantitative compar-
ison between PS and CPS fittings, with the puppet showing the accuracy rate of each part
and the global detection accuracy (below the puppet). Some images with the PS or CPS
superimposed (with M=2 and M=3, the row below). (c) PS in multi-shot vs. CPS. (d) CMC
curves for the separate features in CPS. (e) CMC curves for separate parts in CPS. (f) nAUC
scores obtained by using ensembles of parts attached to the torso. (g) Multi-shot comparison
vs other approaches. (h) CPS vs SDALF in a multi-shot perspective. See text.

human figures, viewed either in frontal, back or side views. After having tested the full body
configuration of 10 parts, we settled on a reduced body setting (see Fig.3(a)), dropping upper
and lower arms. In fact, we found out that these parts were often misplaced, due to either the
framing, the small size images (as low as 17×39), the severe noise, the illumination changes
or the (self-)occlusions.

4.2 Exploratory analysis on iLIDS
The iLIDS MCTS videos have been captured at a busy airport arrival hall [26]: the dataset
consists of 119 pedestrians with 479 images normalized to 64×128 pixels. The images come
from non-overlapping cameras, subject to quite large illumination changes and occlusions.
On average, each individual has 4 images. The best single-shot performance is obtained by
a covariance-based technique (SCR)[3], while the best multi-shot modality by SDALF [8].

We first consider the single-shot case, reproducing the same experimental settings of
[8, 26]. We randomly select one image for each pedestrian to build the gallery set, while
the rest forms the probe set; then, the matching between each probe and the gallery set is
estimated. This procedure is repeated 10 times, and the average CMC is displayed. Fig. 4(a)
shows that PS performs slightly worse than SCR, but better than SDALF and the Context-
based strategy (Cbased) of [26], which is learning-based.

As for the multi-shot case, in order to genuinely evaluate the proposed CPS, we refer to
a multi-vs-multi matching policy introduced in [8], where both probe and gallery sets have
groups of M images per individual and the distance between two given groups can be taken
to be the shortest among all pairs of images. For the sake of clarity, we want to point out that
the single-shot modality introduced in [26] and the multi-vs-multi case presented in [8] are
not directly comparable. In fact, let us assume we have a total of N images for an individual.
In the single-shot case, one image is randomly chosen as gallery sample and the other N−1
are chosen as probes. In the multi-shot case, M images are taken as gallery and other M
as probe. Now, the single-shot evaluation of a native multi-image dataset uses all probes
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Figure 5: Multi-shot results on the ETHZ 1,2,3 datasets.

to retrieve the CMC curve, focusing on their collective behavior, while multi-shot will deal
with a smaller subset of images in a setting that is more realistic for a live re-id system.

Having clarified the terms of comparisons, we first evaluated the improvement in the
localization of the parts (Fig.4(b)). To give quantitative figures, we randomly extracted 50
images from the dataset and manually annotated the parts, calculating the fitting accuracy
with the protocol of [10]: PS has 67% of accuracy, while CPS raises to 74.33% (M=2) and
77.67% (M=3). Qualitatively, we show a few examples of MAP body estimates.

Second, we compared the difference between multi-shot PS and CPS. With PS, we col-
lected M individual signatures and used the same matching policy as CPS. In Fig. 4(c), we
show CMC curves (first ten ranks) for M=2 and M=3.

We repeat this procedure 10 times, with different random gallery/probe partitions. CPS
performance is 7.8% higher than PS in average for the first rank. Note that CPS with M=2
is superior to PS with M=3.

Next, we analyze details of our best performance: multi-shot CPS M=3. Regarding
the features employed, from Fig. 4(d) it is apparent that the color histograms do the main
job, while MSCRs help refine the result. As for the relative importance of the body parts,
Fig. 4(e) clearly evidences the major role of the torso, being the larger and more central
area of the body. If we next look at how ensembles of parts together with the torso behave,
Fig. 4(f) confirms that head and lower legs sometimes bring misleading information, being
the smaller and more peripheral areas, but this is highly dependent on the dataset (iLIDS has a
lot of lower image occlusions). In Fig. 4(g), we compare multi-shot results. As competitors,
we consider the best performances of SDALF (obtained in the Multi-vs-Single modality
N=3, where galleries had three signatures and probes had a single one), and HPE [4] multi-
vs-multi with M=5. We get the highest nAUC score, even if at the first rank SDALF does
slightly better (50.25% vs 47.39%). In order to clearly compare CPS vs SDALF efficacy, we
carried out a final experiment with the multi-vs-multi modality which shows the superiority
of CPS in exploiting multiple instances per person, as depicted in Fig. 4(h).

4.3 Other comparative results
ETZH Dataset [7]. Three video sequences have been captured with moving cameras at
head height, originally intended for pedestrian detection. In [22], samples have been taken
for re-id3, generating three variable size image sets with 83 (4.857 images), 35 (1.936 im-
ages) and 28 (1.762 images) pedestrians, respectively. All images have been resized to 32×64
pixels. The challenging aspects of ETHZ are illumination changes and occlusions, and while
the moving camera provides a good range of variations in people’s appearances, the poses
are rather few. SDALF multi-vs-multi M=5 is the best in the literature. Our multi-shot CPS
M=5 retrieves a near 100% nAUC (Fig. 5). It is worth noting that this dataset does not
replicate a genuine videosurveillance setup, because of the head-height moving camera.

3http://www.umiacs.umd.edu/~schwartz/datasets.html
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Figure 6: CAVIAR4REID results on the left: (a) some images of the dataset, at their natural
relative proportions, each pair portraying the same individual; (b) single-shot results and (c)
multi-shot results with probes and galleries from different cameras. VIPeR and VIPeRHu-
man on the right: (d) comparative results on VIPeR (gray-dotted lines are methods based on
a learning stage), and (e) human capabilities against our single-shot PS approach.

CAVIAR for re-id Dataset. CAVIAR4REID4 has been extracted from the CAVIAR database,
in particular the recordings from two different cameras in an indoor shopping center in Lis-
bon. The pedestrians images have been cropped using the provided ground truth. Of the 72
different individuals identified (with images varying from 17×39 to 72×144), 50 are cap-
tured by both views and 22 from only one camera. For each pedestrian, we selected 10
images from 2 different camera views maximizing the variance with respect to resolution
changes, light conditions, occlusions, and pose changes (see samples in Fig. 6).

We set up this dataset to merge together video surveillance challenges like the wide range
of poses and real surveillance footage in iLIDS, and the multiple images and wide range of
resolutions of ETHZ. To take full advantage of these conditions, we decided to take probe
and gallery images from different cameras, one image each for single-shot, M for multi-shot.

Our approach outperforms SDALF in both modes (Fig. 6): in (b), single-shot comparison
on 72 individuals, and, in (c), multi-shot on 50 individuals (M=3,5).

VIPeR Dataset [14]. This dataset5 contains two views of 632 pedestrians, each pair of
views made up of 48×128 images taken from different cameras, under different viewpoint,
pose and light conditions. It is the most challenging dataset currently available for single-shot
re-id. In the literature, results on VIPeR are typically produced by mediating over ten runs,
each consisting in a partition of 316 pairs, with all probes matched against all galleries. The
best performance so far on this dataset is obtained by PRSVM [19] with very similar results
by SDALF. In Fig. 6 (d), we show the comparative CMC curves. Our approach outperforms
the other methods, setting the rank-1 matching rate at 21.84%, and rank 10 at 57.21%.

VIPeR for humans Dataset. Intuitively, the best visual recognizers are people. In order
to compare human and algorithmic capabilities, we extracted 45 image pairs from VIPeR,
focusing on “difficult” samples with strong pose changes and similar clothes. Then, we built
a web application where a test subject is presented a random probe image and asked to per-
form re-id by choosing the most plausible correspondence among the 45 gallery candidates.
In case the subject succeeds, the trial presents the next samples until the end is reached, oth-
erwise the system keeps on asking for the true correspondence. In this way, with multiple
trials a “human” CMC is built. The same trials are given to our algorithm, and a “machine”
CMC is built. 180 trials were performed, by 18 people. In Fig. 6 (e), we confirm that human
capabilities are far beyond the current best techniques. In particular, we ask the subjects

4Available at http://www.re-identification.net/
5http://vision.soe.ucsc.edu/?q=node/178

Citation
Citation
{Gray, Brennan, and Tao} 2007

Citation
Citation
{Prosser, Zheng, Gong, and Xiang} 2010

http://www.re-identification.net/
http://vision.soe.ucsc.edu/?q=node/178


10 CHENG et al.: CUSTOM PICTORIAL STRUCTURES FOR RE-IDENTIFICATION

through questionnaires about the cues they employed. The color of the parts is the primary
cue. The second is the “type” of clothing worn (jacket or shirt, t-shirt and so on). If the
situation is ambiguous, the gender may help, as may the presence of discriminant particulars
(logos on the shirt). Part of the experiments were performed with an eye tracker, producing
the results discussed in the introduction, and visualized in Fig. 1.

5 Conclusions
Exploring the use of PS for re-id is a promising brand new research direction, because it
allows us to finely localize human body parts that provide distinctive features for composing
and matching ID signatures for individuals. Experiments suggest that improving the local-
ization enhances the re-id performance. Therefore, we proposed a strategy to improve the PS
fitting by modeling the common appearance of a given individual within multiple images,
forging the Custom Pictorial Structure (CPS). Overall, our approach improves on previous
state-of-the-art results in multi-shot re-id, as well as doing very well in single-shot. The pos-
sible enhancements are many, from a better (multi-modal) appearance modeling in CPS, to
the adoption of learning strategies to further improve the discriminative power.
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