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Abstract

In this paper, we present an appearance-based method

for person re-identification. It consists in the extraction of

features that model three complementary aspects of the hu-

man appearance: the overall chromatic content, the spatial

arrangement of colors into stable regions, and the presence

of recurrent local motifs with high entropy. All this infor-

mation is derived from different body parts, and weighted

opportunely by exploiting symmetry and asymmetry percep-

tual principles. In this way, robustness against very low

resolution, occlusions and pose, viewpoint and illumination

changes is achieved. The approach applies to situations

where the number of candidates varies continuously, con-

sidering single images or bunch of frames for each individ-

ual. It has been tested on several public benchmark datasets

(ViPER, iLIDS, ETHZ), gaining new state-of-the-art perfor-

mances.

1. Introduction

Person re-identification consists in recognizing an indi-

vidual in diverse locations over different non-overlapping

camera views, considering a large set of candidates. It

represents a valuable task in video surveillance scenarios,

where long-term activities have to be modeled within a large

and structured environment (e.g., airport, metro station).

In this context, a robust modeling of the entire body ap-

pearance of the individual is essential, because other clas-

sical biometric cues (face, gait) may not be available, due

to sensors’ scarce resolution or low frame-rate. Usually,

it is assumed that individuals wear the same clothes be-

tween the different sightings. The model has to be invariant

to pose, viewpoint, illumination changes, and occlusions:

these challenges call for specific human-based solutions.

Re-identification methods that rely only on visual infor-

mation are addressed here as appearance-based techniques

[2, 3, 6, 8, 9, 12, 15, 19, 20, 21]. Other approaches assume

easier operative conditions: they simplify the problem by

adding temporal reasoning on the spatial layout of the mon-

itored environment, in order to prune the candidate set to be

matched [10, 14, 17].
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Figure 1. Sketch of the approach: a) two instances of the

same person; b) x- and y-axes of asymmetry and symmetry, re-

spectively; c) weighted histogram back-projection (brighter pix-

els mean a more important color), d) Maximally Stable Color Re-

gions; e) Recurrent Highly Structured Patches.

In this paper, we present a novel and versatile

appearance-based re-identification method, based on a pon-

dered extraction of local features. After a pre-processing

step, we select salient parts of the body figure by adopting

perceptual principles of symmetry and asymmetry. First,

we find two horizontal axes of asymmetry that isolate three

main body regions, usually corresponding to head, torso and

legs. On the last two, a vertical axis of appearance symme-

try is estimated. Then, complementary aspects of the hu-

man body appearance are detected on each part (see Fig. 1),

highlighting: i) the general chromatic content via HSV his-

togram; ii) the per-region color displacement, through Max-

imally Stable Colour Regions (MSCR) [5]; iii) the presence

of Recurrent Highly Structured Patches (RHSP), estimated

through a novel per-patch similarity analysis. The extracted

features are weighted by the distance with respect to the

vertical axis, so that the effects of pose variations are mini-

mized. Matching these features gives the similarity measure
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between the candidates.

We name our approach Symmetry-Driven Accumulation

of Local Features (SDALF). It applies to both the case

where a single image for each candidate is present, and the

case where multiple images for each individual (not nec-

essarily consecutive) are available. We properly accumu-

late the local features in a single signature: intuitively, the

higher the number of images for each person, the higher the

expressivity of the signature.

SDALF approach is simple and effective. Apart from

RHSP, the other features are not novel in the literature.

Novel is the way – derived from attentive considerations

about the body structure and its appearance – they are as-

sembled together for the task at hand. We tested SDALF on

different compelling public databases: ViPER [7], iLIDS

[16], and ETHZ [4], attaining in most cases novel state-of-

the-art performances. In general, these datasets face all the

different challenges of the re-identification problem: pose,

viewpoint and lighting variations, and occlusions. More-

over, iLIDS is taken from a real surveillance scene.

Finally, SDALF is independent from the number of can-

didates we consider, so it can cope with a varying, arbitrary

large number of elements.

The rest of the paper is organized as follows. In Sec. 2, a

taxonomy of the present literature on the appearance-based

re-identification methods is reported, highlighting the dif-

ferences with respect to our strategy. Sec. 3 is the core of the

paper, detailing our approach. Several comparative results

are reported in Sec. 4, and, finally, conclusions are drawn

and future perspectives are envisaged in Sec. 5.

2. State of the Art

Person appearance-based re-identification techniques

can be organized in two main groups. The first focuses

on the hardest situation, that is, associating pairs of im-

ages, each containing one instance of an individual. We

name these methods as single-shot approaches. The sec-

ond group employs multiple images of the same person as

training data, considering still images or short sequences as

testing observations. We name these methods as multiple-

shot approaches.

As to single-shot approaches, in [20] the method consists

in segmenting a pedestrian image into regions, and register-

ing their color spatial relationship into a co-occurrence ma-

trix. This technique works well when pedestrians are seen

from small varying points of view. Viewpoint invariance is

instead the main issue addressed in [8]: spatial and color

information are combined using an ensemble of discrim-

inant localized features and classifiers, selected by boost-

ing. Other approaches focus on enhancing the discrimina-

tive power of each individual signature with respect to the

others. In [12], pairwise dissimilarity profiles between indi-

viduals are learned and adapted for a nearest neighbor clas-

sification. Similarly, in [19], a high-dimensional signature

composed by texture, gradient and color information is pro-

jected into a low-dimensional discriminant latent space by

Partial Least Squares (PLS) reduction. In both methods, a

learning phase based on the pedestrians to re-identify is re-

quired. If a novel person is added to the set, this phase has to

be re-computed. Finally, an approach that potentially opens

a new direction is [21], where the description of a person

is enriched by contextual visual knowledge coming from

the surrounding people. The method implies that a group

association between two or more people holds in different

locations of a given environment, and exploits novel visual

group descriptors, embedding visual words into concentric

spatial structures.

As to multiple-shot approaches, in [15], for each consid-

ered subject, a set of local and global features are extracted

from a set of training images and fed into an SVM, employ-

ing different learning schemes. In [3], the bounding box of

a pedestrian is equally divided into ten horizontal stripes,

extracting the median HSL value in order to manage x-axis

pose variations. These values, accumulated over different

frames, generate a multiple signature. A spatio-temporal lo-

cal feature grouping and matching is proposed in [6], con-

sidering ten consecutive frames for each person, and esti-

mating a region-based segmented image. The same authors

present a more expressive model, building a decomposable

triangulated graph that captures the spatial distribution of

the local descriptions over time. This permits a more accu-

rate matching. In [9], the person re-identification scheme

is based on the matching of SURF [2] interest points, col-

lected in several images during short video sequences.

Considering all these methods, our SDALF approach dif-

fers on the following aspects. i) Unlike [12, 19], no discrim-

inative training is needed on the joint battery of candidates:

our approach applies independently on each new individual

at hand; this is advantageous when dealing with a large and

variable number of persons. ii) It copes better with view-

point, pose and illumination variations, as witnessed by the

experimental results. iii) It is flexible, working in both the

single- and the multi-shot case.

3. The Approach

SDALF is a three-phase process. The phases apply in a

slightly different way whether we are in the single or in the

multiple-shot case.

In the first phase, axes of asymmetry and symmetry are

found for each pedestrian image. This phase assumes the

presence of the silhouette of the individual, disregarding

the background (BG). In the single-shot case, a silhouette

mask Z containing only foreground (FG) pixel values is

obtained for each person by inferring over the STEL gen-

erative model [11]. STEL model captures the general struc-

ture of an image class as a blending of several component
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Figure 2. Symmetry-based Silhouette Partition. On the top row,

overview of the method: first the asymmetrical axis AxTL is ex-

tracted, then AxHT ; afterwards, for each Rk region the symmet-

rical axis jLRk are computed. On the bottom row, examples of

symmetry-based partitions on images from the datasets. As you

can notice, they coherently follow the pose variation.

segmentations, isolating meaningful parts that exhibit tight

feature distributions. The model has been customized here

for the FG/BG separation (we set 2 components and 2 parts,

corresponding to the FG and BG), and learned beforehand

using a pedestrian database. The segmentation over new

samples consists in a fast inference (see [11] for further de-

tails).

In the multiple-shot case, if a video sequence is pro-

cessed, a BG subtraction strategy is enough to obtain the sil-

houette. For convenience, let us suppose that Z is bounded

by a box of size I × J .

In the second phase, features are extracted from the

equalized FG images and they are accumulated in a single

signature. In the third and final phase matching of the sig-

natures is performed.

3.1. Symmetrybased Silhouette Partition

Gestalt theory considers symmetry as a fundamental

principle of perception: symmetrical elements are more

likely integrated into one coherent object than asymmetric

regions. This finding has been largely exploited for charac-

terizing salient parts of a structured object [13, 18].

Here, we apply this principle for individuating salient

human parts that lend themselves to being robustly de-

scribed. A straightforward way would be to simply use

fixed partitions of the bounding box. However, 1) it is

no guaranteed that a person’s body is well centered in the

bounding box, and 2) we experimentally found that a more

principled search gives better results, since the segmenta-

tion is prone to errors.

Let us first define two basic operators. The first one is

the chromatic bilateral operator:

C(i, δ) =
∑

B[i−δ,i+δ]

d2 (pi, p̂i) (1)

where d(·, ·) is the Euclidean distance, evaluated between

HSV pixel values pi, p̂i, located symmetrically with respect

to the horizontal axis at height i. This distance is summed

up over B[i−δ,i+δ], i.e. the FG region lying in the box of

width J and vertical extension [i− δ, i+ δ] (see Fig. 2). We

fix δ = I/4, proportional to the image height, so that scale

independency can be achieved.

The second one is the spatial covering operator, that cal-

culates the difference of FG areas for two regions:

S(i, δ) =
1

Jδ

∣

∣A
(

B[i−δ,i]

)

− A
(

B[i,i+δ]

)
∣

∣ , (2)

where A
(

B[i−δ,i]

)

, similarly as above, is the FG area in the

box of width J and vertical extension [i − δ, i].
Combining opportunely C and S gives the axes of sym-

metry and asymmetry. The main x-axis of asymmetry

AxTL is located at height iTL, obtained as:

iTL = argmin
i

(1 − C(i, δ)) + S(i, δ), (3)

i.e., we look for the x-axis that separates regions with

strongly different appearance and similar area. The values

of C are normalized. The search for iTL holds in the inter-

val [δ, I − δ]: AxTL usually separates the two biggest body

portions characterized by different colors (corresponding to

t-shirt/pants or suit/legs, for example).

The other x-axis of (area) asymmetry AxHT is posi-

tioned at height iHT , obtained as:

iHT = argmin
i

(−S(i, δ)) . (4)

This separates regions that strongly differ in area and places

AxHT between head and shoulders. The search for iHT is

limited in the interval [δ, iTL − δ].
The values iHT and iTL isolate three regions Rk, k =

{0, 1, 2}, approximately corresponding to head, body and

legs, respectively (see Fig. 2). The head part R0 is dis-

carded, because it often consists in few pixels, carrying very

low informative content.

On R1 and R2, a y-axis of symmetry is estimated. This

is located in jLRk, (k = 1, 2), obtained from:

jLRk = argmin
j

C(j, δ) + S(j, δ). (5)

This time, C is evaluated on the FG region of size the height

of Rk and width δ (see Fig. 2). We look for regions with



similar appearance and area. In this case, δ is proportional

to the image width, and it is fixed to J/4.

This simple perceptually-driven strategy individuates

body parts which are dependent on the visual and positional

information of the clothes, robust to pose, viewpoint varia-

tions, and low resolution (where pose estimation techniques

usually fail or cannot be satisfactorily applied).

3.2. Symmetrydriven Accumulation of Local Fea
tures

Once the asymmetry/symmetry axes have been set, dif-

ferent features are extracted from each part, in order to en-

code their visual appearance. For all features, their distance

with respect to the jLRk-axes is taken into account in order

to minimize the effects of pose variations.

Weighted Color Histograms. In order to encode all the

chromatic content of each part of the pedestrian, HSV his-

tograms are employed; in fact, local histograms have proven

to be very effective and largely adopted [1, 8]. More

specifically, we build weighted histograms, thus taking into

consideration the distance to the jLRk-axes: each pixel is

weighted by a one-dimensional Gaussian kernel N (µ, σ),
where µ is the y-coordinate of the jLRk, and σ is a priori set

to J/4. In this way, pixel values near jLRk count more in

the final histogram. In the single-shot case, one has a single

histogram for each part. In the multiple shot case, one has

multiple histograms for each part, and we leave to match-

ing method to choose the most representative histogram (see

Sec. 3.3).

Maximally Stable Color Regions (MSCR). The MSCR

operator1 [5] detects a set of blob regions by looking at

successive steps of an agglomerative clustering of image

pixels. Each step clusters neighboring pixels with similar

color, considering a threshold that represents the maximal

chromatic distance between colors. Those maximal regions

that are stable over a range of steps constitute the maxi-

mally stable color regions of the image. The detected re-

gions are then described by their area, centroid, second mo-

ment matrix and average color, forming 9-dimensional pat-

terns. These features exhibit desirable properties for feature

matching: covariance to adjacency preserving transforma-

tions and invariance to scale changes and affine transforma-

tions of image color intensities. Moreover, they show high

repeatability, i.e., given two views of an object, MSCRs are

likely to occur in the same correspondent location.

In the single-shot case, we extract MSCRs separately

from each (FG) part of the pedestrian. In order to dis-

card outliers, we select only MSCRs that lay inside the

Gaussian kernel used for color histograms. In the multiple-

shot case, we opportunely accumulate the MSCRs coming

1We used the author’s implementation, downloadable at

http://www2.cvl.isy.liu.se/ perfo/software/.

from the different images by employing a Gaussian cluster-

ing procedure [22], which automatically selects the number

of components. The clustering is carried out using the 5-

dimensional MSCR sub-pattern composed by the centroid

and the average color of the blob. We cluster the blobs sim-

ilar in appearance and position, since they yield redundant

information. The contribution of this clustering operation is

two-fold: i) it captures only the relevant information, and ii)

it keeps low the computational cost of the matching process,

where the clustering results are used.

High-entropy 

patches

Transformed 

patches
LNCC maps

Merging and 

Thresholding

Clustering

Figure 3. Recurrent high-structured patches extraction. The final

result of this process is a set of patches (in this case only one)

characterizing each body part of the pedestrian.

Recurrent High-Structured Patches (RHSP). The

novel feature we propose aims at highlighting those image

patches with texture characteristics that are highly recurrent

in the pedestrian appearance (see Fig. 3). The first step

consists in the random extraction of patches p of size

[I/6 × J/6], independently on each (FG) part of the

pedestrian. In order to take symmetries into consideration,

we mainly sample these patches around the jLRk-axes,

exploiting the Gaussian kernel used for the color his-

tograms computation. In order to focus on informative

patches, we operate a thresholding on the values of entropy

of the patches, thus pruning patches with low structural

information (e.g., uniform color). This entropy is computed

as the sum Hp of the entropy of each RGB channel. We

choose those patches with Hp higher than a fixed threshold

τH ( = 13 in all our experiments).

The next step is to apply a set of transformations Ti,

i = 1, 2, . . . , NT on p, in order to check its invariance to

geometric variations of the object. By these transformations

we generate a set of NT patches pi, and obtain an enlarged

set p̂ = {p1, . . . , pNT
, p}. As Ti we consider rotations

along the y central axis of the patch.

Subsequently, we investigate how recurrent a patch

is. We evaluate the Local Normalized Cross-Correlation

(LNCC) for each patch in p̂. We do not consider the LNCC

values of the whole image part, but only a local region con-

taining p. All the NT + 1 LNCC maps are then merged



together into the average map. Patches containing small val-

ues in this map are discarded. Finally, given all remaining p,

we cluster them together, in order to avoid patches with sim-

ilar content. To this end, we employ the Gaussian clustering

[22] on the HSV histogram of the patches, maintaining for

each final cluster the patch nearest to the cluster’s centroid.

The single-shot and the multiple-shot methods are simi-

lar, with the only difference that in the multi-shot case the

candidate RHSPs are accumulated over different frames.

3.3. Feature Matching

In this section, we illustrate how the different features

are jointly used as a single signature for matching. In gen-

eral, we have two sets of pedestrian images: a gallery set A
and a probe set B. Re-identification consists in associating

each person of B to the corresponding person of A. This

association depends on the content of two sets: 1) single-

shot vs single-shot (SvsS), if each image represents a dif-

ferent individual; 2) multiple-shot vs single-shot (MvsS), if

each image in B represents a different individual, and in A
a single person is described by a multiple images signature;

3) multiple-shot vs multiple-shot (MvsM), if both A and B
contain signatures from multiple images. Groups of images

of the same individual can be obtained from tracking infor-

mation, if available.

In general, the matching of two signatures IA and IB is

carried out by estimating the SDALF matching distance d:

d(IA, IB) = βWH · dWH(WH(IA), WH(IB))+ (6)

βMSCR · dMSCR(MSCR(IA), MSCR(IB))+ (7)

βRHSP · dRHSP(RHSP(IA), RHSP(IB)) (8)

where the WH(·), MSCR(·), and RHSP(·) are the pro-

posed weighted histograms, MSCRs, and Recurrent High-

Structured Patches, respectively, and βs are normalized

weights.

The distance dWH evaluates the weighted color his-

tograms. The HSV histograms of each part are concate-

nated, channel by channel, and compared via Bhattacharyya

distance. In the MvsM and MvsS association, we compare

each possible pair of histograms contained in the different

signatures, selecting the obtained lowest distance.

For dMSCR, in the SvsS case, we estimate the minimum

distance of each MSCR element b in IB to each element a
in IA. This distance is defined by two components: dab

y , that

compares the y component of the MSCR centroids, and dab
c ,

that compares their mean color. In both cases, the compari-

son is carried out using the Euclidean distance. This results:

dMSCR =
∑

b∈IB

min
a∈IA

γ · dab
y + (1 − γ) · dab

c (9)

where γ takes values between 0 and 1.

In the MvsM and MvsS association, in order to speed up

the computation, we first calculate dMSCR on each MSCR b
of IB and each cluster representative of IA. The represen-

tative that gives the lowest distance indicates the cluster, i.e.

the set of MSCRs, with which b must be compared with.

dRHSP is obtained by selecting the best pair of RHSP,

one in IA and one in IB . We evaluate the minimum Bhat-

tacharyya distance among the RHSP’s HSV histograms.

This is done independently for each body part, summing all

the distances achieved and then normalizing for the num-

ber of pairs. We used HSV histograms, instead of a feature

more specific for describing textures, because the RHSP’s

content is not necessarily a texture, since it exhibits less reg-

ularity.

In our experiments, we fix the values of the parameters

as follows: βWH = 0.4, βMSCR = 0.4, βRHSP = 0.2 and

γ = 0.4. These values are estimated using the first 100

image pairs of the VIPeR dataset, and left unchanged for all

the experiments.

4. Experimental Results

In this section we show extensive experiments to evalu-

ate our approach, providing comparisons with other meth-

ods in the state of the art on benchmark datasets. We con-

sider three different datasets. Each one covers different as-

pects and challenges for the person re-identification prob-

lem. The results are shown in terms of recognition rate,

by the Cumulative Matching Characteristic (CMC) curve,

and the re-identification rate, by the Synthetic Recognition

Rate (SRR) curve. The CMC curve represents the expecta-

tion of finding the correct match in the top n matches. The

SRR curve represents the probability that any of the m best

matches is correct. This follows the validation method sug-

gested in [7] for the person re-identification problem. All

the following results are obtained using the parameters’ val-

ues as detailed in Sec. 3.

VIPeR Dataset [7]. This dataset2 contains two views of

632 pedestrians. Each pair is made up of images of the

same pedestrian taken from different cameras, under differ-

ent viewpoint, pose and light conditions. All images are

normalized to 128 × 48 pixels. Most of the examples con-

tain a viewpoint change of 90 degrees. Each pair is ran-

domly split into two sets: CAM A and CAM B. It is the

most challenging dataset currently available for pedestrian

re-identification.

Considering images from CAM B as the gallery set, and

images from CAM A as the probe set, each image of the

probe set is matched with the images of the gallery. This

2The dataset is available to download at the web address

http://vision.soe.ucsc.edu/?q=node/178



provides a ranking for every image in the gallery with re-

spect to the probe. Ideally rank 1 should be assigned only

to the correct pair matches.

The best performance on this dataset is obtained in [8].

In their experimental section, the authors split the dataset

evenly into a training and a test set, and run their ELF al-

gorithm. In order to fairly compare our results with theirs,

we should know precisely the splitting assignment. Since

this information is not provided we compare the results pub-

lished in [8] with the average of the results obtained by our

SDALF method for 10 different random sets of 316 pedes-

trians3. In Fig. 4, we depict the comparative graphs for the

CMC and SRR curves. It can be seen that SDALF outper-

forms ELF. In particular, rank 1 matching rate is around

20% for SDALF, versus around 12% in ELF, while the cor-

rect match can be found in the top 10% (rank 31) around

75% of the times for SDALF, versus around 70% for ELF.

The most erroneous matchings are due to severe lighting

changes, and to the fact that many people tend to dress in

very similar ways. In these cases more cues may be nec-

essary, like higher resolution images, in order to grab finer

image details, or to consider spatio-temporal information.

We analyze also the robustness of the proposed method

when the image resolution decreases. We scale the original

images of the VIPeR dataset by factors 0.75, 0.5 and 0.33.

The results, depicted in Fig. 4, show that the performances

decrease only slightly.

iLIDS Dataset [16]. The iLIDS MCTS dataset is a pub-

licly available video dataset captured at an airport arrival

hall in the busy times under a multi-camera CCTV net-

work. It is a real scenario. From these videos a dataset of

479 images of 119 pedestrians was extracted by Zheng et al

for testing their Context-based pedestrian re-identification

method in [21]. The images of this dataset, normalized to

128 × 64 pixels, derive from non-overlapping cameras, un-

der quite large illumination changes and subject to occlu-

sions (not present in VIPeR). [21] produces the best per-

formances on this dataset. Since there are more than two

examples for each pedestrian, we can evaluate both single

and multiple-shot cases.

As to single shot case, we reproduce the same settings

of the experiments in [21] in order to make a fair compar-

ison. We randomly select one image for each pedestrian

to build the gallery set, while the others form the probe

set. Then, the matching between probe and gallery set is

estimated. For each image in the probe set the position

of the correct match is obtained. This whole procedure is

repeated 10 times, and the average CMC and SRR curves

are displayed in Fig. 5. We outperform [21], without us-

ing any additional information about the context, and even

3To receive the exact partitions used, in order to facilitate future com-

parative experiments, please contact us.

using images at lower resolution. SDALF proves to be ro-

bust enough to deal with occlusions and quite crowded sit-

uations. Indeed, some images of the dataset contain more

than one person.

As to the multiple-shot case, we run experiments both on

MvsS and MvsM cases. For the former, we build a gallery

set of multi-shot signatures and we match it with a probe

set of one-shot signatures. For the latter, both gallery and

probe sets are made up of multi-shot signatures. In both

cases, the multiple-shot signatures are built from N images

of the same pedestrian randomly selected. Since the dataset

contains a mean of about 4 images for pedestrian, we test

our algorithm with N = {2, 3} for MvsS and just N = 2
for MvsM. For each case, we run 100 independent trials.

The results, depicted in Fig. 5, show that, in the MvsS case,

just 2 images are enough to increment the performances of

about 10%. Adding another image induces an increment of

20% with respect to the single-shot case. It is interesting

to note that the results for MvsM lay between these two

performances.

ETZH Dataset [4]. This dataset is captured from moving

cameras, and it has been used originally for pedestrian de-

tection. Schwartz and Davis in [19] extract a set of samples

for each different person in the videos, and use the resulting

set of images to test their PLS method4. The moving camera

setup provides a range of variations in people’s appearance.

Variation in pose is relatively small, though, in comparison

with the other two datasets. The most challenging aspects of

ETHZ are illumination changes and occlusions. All images

are normalized to 64 × 32 pixels. The dataset is structured

as follows: SEQ. #1 contains 83 pedestrians, for a total of

4.857 images; SEQ. #2 contains 35 pedestrians, for a total

of 1.936 images; SEQ. #3 contains 28 pedestrians, for a to-

tal of 1.762 images. [19] produces the best performances

on this dataset.

In the single-shot case, the experiments are carried out

exactly as for iLIDS. We repeat the same operation 10

times, in order to provide a robust statistics. The multiple-

shot case is carried out considering N = 2, 5, 10 for MvsS

and MvsM, with 100 independent trials for each case. Since

the images of the same pedestrian come from video se-

quences, many are very similar and picking them for build-

ing the multi-shot signature would not provide new infor-

mation about the subject. Therefore, we apply beforehand

a clustering algorithm [22] on the original frames, based on

their HSV histograms. Consecutive similar frames would

end up in the same cluster. At this point, we select randomly

one frame for each cluster: these are the keyframes to use

for the multi-shot signature. The results for both single and

multiple-shot case for SEQ. #1 are reported on Fig. 6. We

4The dataset is available to download at the web address

http://www.umiacs.umd.edu/∼schwartz/datasets.html
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Figure 4. Performances on VIPeR dataset. In (a) and (b), comparison with ELF method. In (c) and (d), comparison of SDALF at different

scales. In (a) and (c) the CMC curve. Only the first 50 ranking positions are displayed. In (b) and (d) the SRR curve.
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Figure 5. Performances on iLIDS dataset. (a): CMC curves, comparing the results reported in [21] and single-shot SDALF at different

resolutions. (c) and (d): CMC and SRR curves for MvsS and MvsM cases. For reference, we put also the single-shot case (N = 1). In the

CMC curves, in accordance with what reported in [21], only the first 25 ranking positions are displayed.

compare the results with what reported in [19]. In SEQ. #1

we do not obtain the best results in the single-shot case, but

adding more information to the signature we can get up to

86% rank 1 correct matches for MvsS and up to 90% for

MvsM. We think that the difference with PLS is due to the

fact that PLS uses all foreground and background informa-

tion, while we use only the foreground. Background infor-

mation helps here because each pedestrian is framed and

tracked in the same location, but it is not valid in general in

a multicamera setting. Additionally, PLS requires to have

all the gallery signatures beforehand, in order to estimate

the weights on the appearance model. If one pedestrian is

added the weights must be recomputed.

In SEQ. #2 (Fig. 6) we have a similar behavior: rank

1 correct matches can be obtained in 91% of the cases for

MvsS, 92% of the cases for MvsM. The results for SEQ. #3

show instead that SDALF outperforms PLS even in the

single-shot case. The best performance as to rank 1 cor-

rect matches is 98% for MvsS and 94% for MvsM. It is in-

teresting to note that there is a point after that adding more

information does not enrich the descriptive power of the sig-

nature any more. N = 5 seems to be the correct number of

images to use.
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5. Conclusions

In this paper, we addressed the appearance-based re-

identification problem proposing a feature extraction and

matching strategy. This strategy is based on the localiza-

tion of perceptual relevant human parts, driven by asym-

metry/symmetry principles, followed by the extraction of

three complementary kinds of features. Each type of feature

encodes different information, namely, chromatic informa-

tion, structural information through uniformly colored re-

gions, and the nature of recurrent informative (in an entropy

sense) patches. In this way, robustness to pose, viewpoint

and illumination variations is achieved.

The method works by using a single image of a per-
son (single-shot modality), or several frames (multiple-shot
modality). We tested our approach (in single-shot modal-
ity) on three challenging public databases (VIPeR, iLIDS,
and ETHZ), outperforming the highest performances on all
but one dataset. In the multiple-shot modality, our perfor-
mances strongly increase, setting new state-of-the-art re-
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Figure 6. Performances ETHZ dataset. Top row, results on

SEQ. #1; middle row, on SEQ. #2; bottom row, on SEQ. #3.

We compare our method with the results of PLS method in [19].

On the left column, we report the results for single-shot SDALF

(N = 1) and MvsS SDALF; on the right column the results for

MvsM SDALF. In accordance with what reported in [19], only the

first 7 ranking positions are displayed.

sults. Finally, we would like to outline the fact that our tech-
nique operates independently on each individual, not em-
bracing discriminative philosophies which need the knowl-
edge of the entire dataset: we simply extract a novel set
of reliable, robust, and descriptive localized features. This
opens up to a wide range of future developments and cus-
tomizations, including feature boosting, multi-scale reason-
ing, to be possibly used in a multi-object tracking tech-
nique.
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