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ABSTRACT
Bag of Visual words (BoV) is one of the most successful strat-
egy for object recognition, used to represent an image as a
vector of counts using a learned vocabulary. This strategy as-
sumes that the representation is built using patches that are
either densely extracted or sampled from the images using
feature detectors. However, the dense strategy captures also
the noisy background information, whereas the feature detec-
tion strategy can lose important parts of the objects. In this
paper we propose a solution in-between these two strategies,
by densely extracting patches from the image, and weighting
them accordingly to their salience. Intuitively, highly salient
patches have an important role in describing an object, while
those with low saliency are still taken with low emphasis, in-
stead of discarding them. We embed this idea in the word
encoding mechanism adopted in the BoV approaches. The
technique is successfully applied to vector quantization and
Fisher vector, on Caltech-101 and Caltech-256.

Index Terms— object recognition, dictionary learning,
visual saliency, feature weighting

1. INTRODUCTION

Visual object recognition is one of the most studied problems
in computer vision. It is challenging due to the high vari-
ability of the object appearance, the complex background, the
illumination and viewpoint changes, the non-rigid deforma-
tions, the intraclass variability and other visual properties. A
major effort have been spent in the last 20 years to engineer
or learn an object representation that is invariant to these nui-
sances (e.g., [1, 2, 3]). A recent and comprehensive review
can be found in [4].

The BoV approach [1] is widely accepted as standard
technique to describe the object appearance from images.
The idea is to build/learn a visual dictionary of patches (or
their descriptor, such as SIFT [5]), and represent the image
as a vector of counts of the number of elements associated
to each word of the dictionary. The main advantages of this
technique are the robustness to spatial translations of features,
the efficiency to compute it, and its competitive performance
in different image categorization tasks.

* Marco San Biagio and Loris Bazzani contributed equally to this work.

Fig. 1. (a) Dense features, (b) feature detector and (c) dense
feature + salience.

The BoV representation considers either a dense grid of
patches in the image [2] (Fig. 1 (a)) or a sparse set of patches
selected by a feature point detector [5] (Fig. 1 (b)). However,
the former approach can inject into the representation noisy
information such as the background and other irrelevant ob-
jects or clutter. The latter approach may discard useful infor-
mation that may be relevant for recognition. Furthermore, it
often involves the tuning of a threshold parameter for keeping
the most salient features.

In this paper, we propose a method that is a trade-off be-
tween the two approaches described above. The BoV repre-
sentation is built using a grid of patches, where each patch
generates a weight corresponding to its saliency, depending
on the adopted saliency detection algorithm (Fig. 1 (c)). In-
tuitively, patches that are less salient are still considered but
with low importance, instead of discarding them. In this way,
the proposed method 1) considers all the patches of the im-
age with different importance and 2) does not discard any
information that may be relevant for the object recognition
task. We show that the proposed technique can combine the
salience map with different existing encoding methods: Vec-
tor Quantization (VQ) [2] and Fisher Vector (FV) [6]. Fur-
thermore, our approach can be easily extended to other en-
coders, such as locality-constrained linear coding [7], and
VLAD [8].

We tested our approach to two challenging public object
recognition datasets, namely, Caltech-101 [9] and Caltech-
256 [10]. In all the cases, we show that the proposed method
is beneficial, leading to an improvement in terms of classifi-
cation accuracy, with respect to classical encoding schemes.

The rest of the paper is organized as follows. Sec. 2 re-



Fig. 2. Proposed object recognition pipeline.

ports the related work. Sec. 3 and Sec. 4 present our object
recognition pipeline and the proposed technique, respectively.
In Sec. 5, we report the classification results. In Sec. 6, we
draw the conclusions and discuss the future work.

2. RELATED WORK

Many works are focused on proposing novel descriptors
[11, 12] and/or encoders [7, 8, 13] with the goals of building
a robust representation and obtaining state-of-the-art perfor-
mance. Other papers investigate novel learning frameworks
[14, 15, 16] that are engineered to perform the best on object
recognition.

On the other hand, a lot of research has also been devoted
to propose efficient and robust methods to extract object-
generic, general-purpose salience maps extracted from the
image. See [17] for a recent qualitative and quantitative anal-
ysis of techniques of saliency extraction. To the best of our
knowledge, most of the existing BoV methods do not con-
sider the importance of different patches in the image. We
therefore propose to inject the salience of each patch in the
encoder of the BoV method.

Our approach has some connections with [18], where the
BoV vector is weighted by a context-independent salience
score exploiting the segmentation between foreground and
background. However, the foreground segmentation is it-
self a challenging problem in most of the object recognition
datasets, where the background is usually cluttered. In [19],
the salience is class-dependent and learned on training data.
We instead use a bottom-up salience map [20] that is built
from features and therefore is class-independent.

In [21], a fixed number of salient points are detected us-
ing a salience score, given by a principle of occurrence-based
contextual salience: a code is salient if its presence cannot be
inferred by other codes. Moreover, spatial information is em-
bedded into salience. In contrast with the proposed approach,
features that might be relevant for classification are discarded.

3. THE OBJECT RECOGNITION PIPELINE

The proposed pipeline is depicted in Fig. 2. In the first step,
a grid of pixel locations with spacing of 4 pixels in both x,y

directions is defined on the image. Around these pixel loca-
tions, patches of different sizes (12 × 12, 18 × 18, 24 × 24,
30×30 pixels) are extracted. On each patch, a SIFT descriptor
[5] is calculated (“Feature Extraction” block in Fig. 2), gener-
ating a set of local descriptors for each image. In the “Code-
book creation” step, the local descriptors are used to gener-
ate a codebook with K words, by Gaussian Mixture Model
(GMM) clustering (usually using a subset of all the images’
descriptors).

At this point, each descriptor of a given image is quan-
tized into a weighted code, considering the most similar vi-
sual word of the codebook, and exploiting a saliency map
[20], see the details in the next section (third step of Fig. 2).
This results in a weighted histogram, where the height of
each bin depends on the number of associated codes retrieved
in the image, and on their related weights. This is called a
Weighted Bag of Visual words (Weighted BoV). Note that
previous works either consider all the patches without giving
different importance to them (e.g., [2]) or selecting a subset
of patches with a feature point detector (e.g., [5]).

In the next step, the image is partitioned into increasingly
finer spatial sub-regions and Weighted BoV are computed
from each sub-region, following a spatial pyramid scheme
[2] (“Spatial Pyramid Matching” block in Fig. 2). Typically,
2r × 2r sub-regions, with r = {0, 1, 2} are used, as shown
in Fig. 2. All the Weighted BoV extracted from each sub-
region are pooled and concatenated together, generating the
final Weighted BoV representation of the image. Finally, a
one-vs-all linear SVM is used for classification.

4. WEIGHTED BAG OF VISUAL WORDS

The proposed approach acts on the encoding step by including
additional information that will guide the exploration of the
image, that is the salience of each patch. In this way, each
patch is evaluated with more importance in the case that it is
relevant or salient, and it has less weight in the opposite case.

In this section, we present the proposed method applied
to two specific encoding schemes: VQ [2] and FV [6]. We
named the two methods weighted VQ and weighted FV. Note
that many other encoding methods fit the proposed idea due
to its generality, e.g., VLAD [8], LLC [7] and others.



Let us consider a vocabulary of K words, resulting from
the clustering of some training feature vectors {xi}Ni=1,xi ∈
RD. In practice, the words are represented by K exemplars
forming the set µ = {µ1, µ2, . . . , µK}, µk ∈ RD that is, the
cluster centroids. In our experiments, we use the Expectation-
Maximization algorithm for GMM on the SIFT feature vec-
tors.

Let us assume that an image I can be decomposed in
a grid of NI patches, whose corresponding feature vectors
are {x1,x2, . . . ,xNI

}. Each patch is associated to a weight
{α1, α2, . . . , αNI

}. In the present work, we extracted a
bottom-up salience map [20] from the image, and weights are
defined as the sum of the pixel salience values inside each
patch, normalized by its size. Given the generality of the
proposed idea, any other method to compute the saliency of
an image can be used, such as objectness [22].

Weighted VQ encodes a set of feature vectors extracted
from an image by associating each element to the closest word
in the vocabulary, where the association is weighted by the
corresponding αi. More formally, we define the bag of visual
feature representation as a vector v = [v1, v2, . . . , vK ] where:

vk =

NI∑
i=1

αi δ(xi, µk) (1)

where δ is equal to 1 if the feature vector xi is associated
through a nearest neighborhood policy to the µk, 0 otherwise.
Notice that if we set the αi to be always 1, we obtain the
standard VQ.

FV is an extension of VQ where first and second order
statistics are also considered. Let us assume to have also a co-
variance matrix Σk associated to each word in the dictionary,
that can be easily retrieved when using GMM for clustering.
As in the original paper [6], we assume to have diagonal co-
variance matrices Σk = diag(σdk). The likelihood function
defined in the weighted Fisher vector is the following

L(X|λ) =

NI∑
i=1

αi log

K∑
k=1

wkpk(xi|µk,Σk) (2)

where λ = {wk, µk,Σk}Kk=1 are the parameters of the mix-
ture and pk(x|µk,Σk) is a Gaussian distribution.

In the same spirit of [6], we derived the following equa-
tions that build the weighted Fisher vector:

dL(X|λ)

dµdk
=

NI∑
i=1

αiγi(k)

[
xd − µdk
(σdk)2

]
(3)

dL(X|λ)

dσdk
=

NI∑
i=1

αiγi(k)

[
(xd − µdk)2

(σdk)3
− 1

(σdk)2

]
. (4)

The weighted Fisher vector is the concatenation of dL(X|λ)
dµd

k

and dL(X|λ)
dσd

k

for each k and d. Note that when the αs are
equal to 1 we have the original FV.

METHOD VQ FV
# OF WORDS 128 600 128

Weighted BoV 65.16%
(±1.40)

68.23%
(±1.05)

66.57%
(±0.67)

BoV
63.93%
(±1.37)

67.15%
(±0.96)

64.63%
(±0.53)

Keypoint BoV
51.62%
(±1.31)

50.72%
(±1.91)

50.52%
(±0.61)

Table 1. Results obtained on the Caltech-101 using 15 train-
ing example for each class.

5. EXPERIMENTS

The proposed approach was tested on the Caltech-101 [9] and
Caltech-256 [10] datasets. We followed the validation proce-
dure proposed in [16], using their available code [23].

Caltech-101 [9] represents a key benchmark for the ob-
ject recognition community. It consists of 102 classes (101
object categories plus background). The significant variations
in color, pose and illumination inside each of the 101 classes
make this dataset very challenging. The number of images per
class ranges from 31 to 800 and most of them are at medium
resolution, roughly 250× 280 pixels.

Using the framework described in Sec. 3, we follow the
common experimental setup, namely, we randomly chosen 30
per-class images and subsequently split into 15 for training
and 15 for testing. Five different random partitions are con-
sidered and the average results with standard deviations are
reported. For a fair comparison, while varying the number of
training images, we keep constant the set of descriptors from
which we extract the codebook and the codebook itself, for
each method.

In Table 1, we report classification rates for different di-
mensions of the vocabulary and different methods (VQ and
FV1). The first row shows the proposed weighted bag of fea-
ture approach. The second row and third row report the results
using bag of feature with a dense grid of patches (called BoV)
and a sparse set of patches given by the SIFT detector (called
keypoint BoV), respectively. It is easy to notice in Table 1
that weighting the BoV representation is always beneficial for
both VQ an FV. In average, the proposed method outperforms
the standard BoV and the keypoint BoV of about 1.94% and
16.05% (for FV), respectively.

We extend our analysis also to Caltech-256 [10] that con-
sists of 257 classes (clutter class included) with a minimum
of 80 images per class and a total number of images equal to
30607. It represents much higher variability in object size, lo-
cation, pose and lighting conditions than in Caltech-101. We
followed a similar experimental setup as the Caltech-101. We
train our system on {5, 10, 15, 20, 25, 30} images per class
and test on 15 images, in 5 random splits each.

1For the FV-based methods, we found that one level of the spatial pyramid
is enough to obtain the best results.



METHOD Encoder 5 10 15 20 25 30

Weighted BoV FV
22.28%
(±0.93)

30.31%
(±0.86)

35.08%
(±0.62)

38.23%
(±0.75)

40.25%
(±0.73)

42.39%
(±0.25)

Weighted BoV VQ
21 .14%
(±0.28)

28 .35%
(±0.67)

32 .19%
(±0.41)

35 .09%
(±0.59)

37 .09%
(±0.36)

38 .85%
(±0.59)

BoV VQ
20.80%
(±0.47)

27.92%
(±0.72)

31.88%
(±0.68)

34.40%
(±0.27)

36.69%
(±0.62)

38.32%
(±0.5)

Keypoint BoV VQ
12.07%
(±0.17)

15.81%
(±0.38)

18.41%
(±0.54)

20.08%
(±0.79)

21.32%
(±0.49)

22.44%
(±0.51)

Table 2. Results on Caltech-256 of the proposed method (first two rows) and the two baselines on different sizes of the training
set (number of examples per class).

Fig. 3. Correctly-classified (top two rows) and miss-classified images (bottom two rows) evaluated by the salience pipeline.

Table 2 shows the results of the proposed method (first
two rows) against the baselines (last two rows) increasing the
number of training examples per category. We obtained the
best results with the proposed method using the FV encoder
with an improvement that goes from 1.48% to 4.07% with
respect to the BoV. The improvement with respect to the key-
point BoV is even bigger (from 14.50% to 25.95%). Notice
that also the weighted BoV based on the VQ encoder is al-
ways better than the two baselines.

To better understand the proposed method, we reported in
Fig. 3 (top two rows), pairs of images of Caltech-256 (and
the associated salience maps) correctly classified using the
weighted BoV approach but miss-classified with the classic
BoV. In Fig. 3 (bottom two rows), we also reported some ex-
amples miss-classified using the weighted BoV representa-
tion but classified correctly using the classic BoV. This qual-
itative analysis shows that the weighted BoV representation
is better whether the salience map highlights regions of the
object instance to be classified.

As further experiments, we considered also the Pascal
VOC 2007 dataset [24]. We found out that the results for
all the tested techniques were similarly low. This suggests

that there is the need of more complex objects model and
classifiers. We leave this as future work, instead here we
focused on showing the net value of weighting visual words
with saliency scores.

6. CONCLUSIONS

Modeling the object appearance for object recognition is a
challenging task especially in cluttered images. In this pa-
per, we proposed a novel idea to weight, in a different way,
the elements that compose the descriptor used for the recog-
nition task. This method is general because it can be applied
to any approach based on the bag of visual words model. In
practice, the proposed method is a trade-off between using a
dense grid of patches and a sparse set of detected keypoints.
We showed that the proposed approach outperforms the bag
of visual words method with both dense and sparse patches on
two challenging datasets, namely, Caltech-101 and Caltech-
256. Future effort will be spent extending the idea to other
existing encoders and investigating the role of other salience
and objectness methods, and considering scene recognition
scenarios.
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