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Abstract

Visual tracking of multiple targets is a key step in surveil-
lance scenarios, far from being solved due to its intrinsic
ill-posed nature. In this paper, a comparison of Multi-
Hypothesis Kalman Filter and Particle Filter-based track-
ing is presented. Both methods receive input from a novel
online background subtraction algorithm. The aim of this
work is to highlight advantages and disadvantages of such
tracking techniques. Results are performed using public
challenging data set (PETS 2009), in order to evaluate the
approaches on significant benchmark data.

1. Introduction

In recent years, the interest of many researcher has been
captured by the deployment of automated systems for video
surveillance. Automatic surveillance task can be broken
down into a series of subproblems [11]: 1) object detec-
tion and categorization which detects and classifies the in-
teresting objects in the field of view of the camera(s); 2)
Multi-Target Tracking (MTT) where the objective is to es-
timate the trajectories of targets, keeping the identification
of each target; 3) MTT across cameras tracks the targets
while observing them through multiple overlapping or non-
overlapping cameras.

State-of-the-art systems are not able to deal completely
with all the dynamics of the complex scenarios (e.g., occlu-
sions, illumination changes, shadows, and tracking failures
in crowded environments). In particular, MTT is a chal-
lenging task when partial and complete occlusions occur
among the targets. In order to solve such problems, inte-
grating different tracking algorithms can reduce erroneous
track association, improving system performance, and pro-
ducing better results.

In this work, we focus our attention on MTT step, pre-
senting a comparison of two well-known techniques: Multi-
Hypothesis Kalman Filter (MHKF) and Particle Filter (PF)
based tracking. Moreover, we propose an online back-
ground subtraction method dealing with the image clutter

that causes failures in MTT. Indeed, accurate moving target
detection allows to achieve more reliable tracking results.

A Kalman Filter (KF) is an optimal recursive data pro-
cessing algorithm [16]. While KF is used to track a single
target, a multi-target tracking method can be built adding
data association and track management steps. MHKF al-
lows for solving the problem of assignment ambiguity:
when the correct association is not known (e.g., due to a
crowded situation), the same observation can be associated
to multiple existing tracks at the same time.

A PF based approach [9] is a three step online procedure
for MTT. In sampling step, several events (particles) which
describe the state of the system, i.e., the displacement of
the targets by sampling a candidate probability distribution
(pdf) over a state space, are hypothesized. In dynamical
step, dynamic is applied to the particles, and, in observa-
tional step, each hypothesis is evaluated given the observa-
tions of the system and the best fitting ones are selected,
thus avoiding brute-force search in the prohibitively large
state space of the possible events. In this way, the candidate
pdf is refined for the next filtering step.

The paper is organized as follows. After discussing re-
lated work in Section 2, the architecture of the system is
described in Section 3. In Section 4 we present back-
ground modeling process, while in Sections 5 and 6 we de-
tail MHKF and PF tracking algorithms respectively. Section
7 shows results obtained by our comparison, while Section
8 provides the conclusions.

2. Related Work

The emphasis in the MTT is given by two general problems:
1) filtering and 2) data association.

The objective of filtering is to estimate the state of the
system given all the measurements up to the current time.
A number of filtering techniques can be found in literature:
KF [12] represents the optimal solution with the assump-
tions of linear equations and Gaussian noise. Relaxing lin-
earity assumption, a sub-optimal solution is the Extended
Kalman Filter [3]. A general solution (i.e., without assump-



tions) is given by PF that deals with the non-linearity and
non-Gaussianity of the system [8].

Particle filtering was originally designed for single-target
tracking with CONDENSATION [9], and later extended in
a MTT scenario with BraMBLe [10]. MTT with PFs fol-
lows different strategies to achieve strong tracking perfor-
mances avoiding huge computational burdens, exponential
in the number of objects to track [10]. In particular, two
kind of techniques are discussed in literature: 1) indepen-
dent PF for each target with Sequential Importance Sam-
pling (SIS) allows to sample in independent state spaces; 2)
a Markov Chain Monte Carlo MCMC) visits efficiently the
joint state space [8].

The main drawback of the independent PFs approach is
the difficulty to build a reliable interaction model, able to
face occlusions among targets. A probabilistic exclusion
principle based on an active contours framework is pro-
posed in [15]. MCMC is more efficient than SIS [8] and it
enables to build an interaction model in the joint state space,
such as MCMC PF and Reversible-Jump MCMC PF [13].
A limitation of those filters is that the interaction model
acts only on state space and not on the information given
by observations. Hybrid Joint-Separable (HIS) filter [14] is
a general solution based on PF, that maintains a linear re-
lationship between number of objects and particles, and it
builds a interation model on the observation space.

The general MTT problem concerns with multiple tar-
gets and multiple measurements, therefore each target needs
to be validated and associated to a single measurement in
a data association process [3]. Nearest Neighbor (NN)
and Probabilistic Data Association (PDA) methods deal
with “single targets-multiple measurements” data associ-
ation problem, while Joint Probabilistic Data Association
(JPDA) and Multiple Hypothesis (MH) methods deal with
“multiple targets-multiple measurements” data association
problem [3]. Those methods are usually combined with KF,
e.g., NN filter [20], MH tracker [5], and JPDA filter [4].
The drawbacks of those strategies are twofold. First, occlu-
sions cannot be handled because of the lack of an interaction
model. Second, the assumptions of linearity and Gaussian-
ity of the KF cannot manage complex scenarios.

Techniques combining data association methods with
particle filtering to accommodate general non-linear and
non-Gaussian models are Monte Carlo JPDA filter, Inde-
pendent Partition PF [23], and Joint Likelihood filter [19].

3. System Overview

The general architecture of the system is shown in Fig. 1.
Data coming from PETS 2009 database are processed by
three modules: segmentation module, PF tracking module
and MHKF tracking module.

Segmentation module creates background model and ex-
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Figure 1: General architecture of the system.

tracts moving objects, i.e., the foreground image.

PF tracking module receives foreground image as in-
put in addition to the current frame of the sequence, while
MHKF module receives a more refined input, i.e., a filtered
set of observations. Such set is the result of a Number of
People Estimation (NPE) method (see Section 4) combin-
ing inputs from a blob extraction algorithm' and from an
optical flow computation module [6], in order to overcome
the under-segmentation problem (i.e., multiple objects that
are very close in the scene could be detected as a single
blob).

The output of the two tracking approaches is a set of tu-
ple for each time ¢:

Xt = (ID,X,KZ,JTu,yl,h,UJ)

where ID is the target identifier, X, Y, Z are the coordinates
of the 3D point, x,,, y;, h, w define the bounding box on the
image plane that contains the target. In particular, z,,y;
is the top-left corner of the bounding box and h,w are the
height and the weight, respectively. A list of A} with the
same ID define a target track.

4. Background Modeling

An overview and comparison of background techniques can
be found in [18]. The background can be modeled in a
recursive way as: a Gaussian distribution [24], under the
condition of static background, and a Gaussian mixture
[22, 25], when the background has a multi-modal distribu-
tion. Other methods like median filtering [7] and Eigen-
background [17] are based on a non-recursive modeling to
compute the foreground.

'We use cvBlobsLib library : http://opencv.willowgarage.
com/wiki/cvBlobsLib



Our approach to background modeling is a non-recursive
technique based on a statistical analysis of a buffer L of Ng
frames. According to a sampling period P, current frame is
added to L becoming a background sample S;, 1 < i < Ng.

An online process clusters sample color values into an
RGB histogram, creating a background model M. M is
a multi-dimensional image, i.e., every background model
pixel is represented by a set of clusters. The complete algo-
rithm for a single color channel is provided in Alg. 1.

Algorithm 1: Background Modeling
Let M be the background model, S; the ¢th
background sample (1 < i < Ng), D the minimal
cluster dimension, and A the association threshold.

foreach pizel € S; with color value V do
if i = 1 then
| Create new cluster C' with centroid ¢ := V;
else if i = Ng then
foreach cluster C do
if dim(C) > D then
| Add centroid ¢ € C to M;

else
foreach cluster C do
if |c — V| < A then

V4 cdim(C).,

- dim(C)+1 >
Add the pixel V to cluster C,;
break;
else

Create new cluster C' with centroid
L c:=V;

Each pixel color value for every S; is associated to a
cluster according to a threshold A. After analyzing the last
sample, if a cluster has a dimension greater than a value D,
then its centroid becomes a background value of M. Up to
| L/ D] background values for each pixel of M are consid-
ered at the same time. Such a solution allows for manag-
ing noise in sensor data, changes in illumination conditions
and movement of small background elements. Furthermore,
computational load can be distributed over time P because
online clustering computation does not need to wait until L
is full.

A new background model is computed with a period
equal to NgP, without memory of previous models. Ng
and P can vary in time, in order to adapt to both gradual
and sudden illumination changes in the scene.

4.1. Background Subtraction

Background subtraction is performed according to a thresh-
old T and a search window W x W. A pixel p belongs

to foreground image if at least one of its RGB color values
differs from one of the corresponding background model
values in the search window. From the resulting foreground
image, a set O of observations (namely, blobs) is extracted.

As stated in Section 3, in order to refine O, optical flow
and calibration data are exploited (see Fig. 1). A Number
of People Estimation (NPE) module calculates the expected
number of people E inside an observation blob b. We model
a person as a cylinder whose axis is vertical in world coordi-
nate system, extracting E as the volume of b divided by the
volume of cylinder model. The filtered set of observations is
made of E/ new observations calculated as a k-means clus-
tering (k = F) of optical flow points belonging to b. NPE
computation examples are given in Fig. 2.

Figure 2: NPE execution examples. Green bounding box
represents observations with expected number of people
E = 1, red bounding box observations with &/ = 2. Blue
bounding box represents a filtered observations after NPE
is applied.

5. Kalman Filter Tracking

A Kalman Filter (KF) is an optimal recursive data process-
ing algorithm [16], representing an efficient solution to the
problem of estimating the state of a discrete-time controlled
process, under the hypothesis of linearity and Gaussianity.
While KF is used to track a single target, a multi-target
tracking method is built adding data association and track
management steps.

A set of KFs is used to keep track of a variable and un-
known number of moving targets. Each time a new obser-
vation is received, it is associated to the correct track among
the set of the existing tracks, or, if it represents a new target,
a new track has to be created. This is a single hypothesis
approach which means that every time an observation is as-
sociated to only one of the existing tracks. If a wrong asso-



ciation occurs (i.e., an observation is associated to a wrong
track) the system cannot recover from this error. When deal-
ing with crowded scenes, it is not straightforward to assign
an observation to a certain track, for this reason we use a
MHKEF tracking system.

The technique used for the data association is the Nearest
Neighbor rule [3]. When a new observation is received, all
existing tracks are projected forward to the time of the new
measurement (predict step of the filter) and the observation
is assigned to the nearest of such predicted state.

The distance between observations and predicted filter
states is computed considering the relative uncertainties
(covariances) associated with them. The most widely used
measure of the correlation between two mean and covari-
ance pair (x1, %) and (x2, 32), which are assumed to be
Gaussian-distributed random variables, is:

exXp (_%(231 —x2)(31 + 22)71(331 — mg)T)
2m | (314 X2) |

l)($1,$2)f:
ey

If this quantity is above a given threshold, the two estimates
are considered to be feasibly correlated. An observation is
assigned to the track with which it has the highest associa-
tion ranking. In this way, a multiple-target problem can be
decomposed into a set of single-target problems. In addi-
tion, when an observation is “’close enough” to more than
one track, multiple hypotheses are generated.

In a multi-hypothesis MTT, tracks are managed by al-
lowing track split and track merge as well as track initial-
ization, track update, track deletion concerning the single-
hypothesis methods. These phases will be described in the
following.

Track initialization. When a new observation is obtained,
if it is not highly correlated with any existing track, a new
track is created and a new KF is initialized with the posi-
tion (z,y) observed, and a null value is given to all the non
observed components (e.g., velocity) with a relatively high
covariance. If the subsequent observations confirm the track
existence, the filter converges to the actual state.

Track update. Once observations are associated to tracks,
standard update of the KFs are performed and the filters nor-
mally evolve.

Track split. When an observation is highly correlated with
more than one track, new association hypotheses are cre-
ated. The new observation received is used to update all the
tracks with which it has a probability association that ex-
ceeds a threshold value. A copy of each not updated track
is also kept. Subsequent observations can be used to deter-
mine which assignment is correct.

Track merge. This step aims at detecting redundant tracks,
i.e., tracks that lock onto the same object (typically after be-
ing split). At each step, the correlation with all the other
tracks is calculated for each track using equation (1). If
the probability association between two tracks exceeds a

threshold, one of the two tracks is deleted, keeping only
the most significant hypothesis.

Track deletion. Finally, when a track is not supported by
observations, the uncertainty in the state estimate increases
and when this is over a threshold, we can delete the track
from the system. We have considered, as a measure of the
uncertainty in the state estimate of each target, the KF gain
relative to the track.

6. Particle Filter Tracking

PF offers a probabilistic framework for recursive dynamic
state estimation [2], that fits with MTT. The goal is to de-
termine the posterior distribution p(x¢|z1.1), where z; is
the current state, z; is the current measurement, and x1.;
and zj.; are the states and the measurements up to time ¢,
respectively. We refer as z, the state of a single object,
and x; = {x},22,..., 2K} the joint state (for all objects).
The Bayesian formulation of p(z¢|21.¢) and the Chapman-
Kolmogorov equation enable us to find a sequential formu-
lation of the problem:

parlz1) o pller) [

Tt—1

p(xe|xi—1)p(Te—1|21:0—1)dT—1
2

PF is fully specified by an initial distribution p(x¢), the
dynamical model p(z;|z;—1), and the observation model
p(zt|z:). The posterior distribution at previous time
p(2t—1]21:t—1) is approximated by a set of N weighted par-
ticles, i.e. {(z™,w{™)}N_,. because the integral in Eq.
(2) is often analytically intractable. Equation (2) can be

rewritten using the Monte Carlo approximation:

xt\zu

Zw(") 0(xy —xtn)). 3)

The update of the weights is computed according the fol-
lows relation (detailed in [2]):

(n) (n) p(zel ™) plai™|z{™)
Wy~ X Wy )
q(zy |93t71’2’t)

where q is called proposal distribution. The design of an
optimal proposal distribution is a critical task. A common

“4)

choice is ¢(z{™ |2\, ) = p(!™|2{™),) because simpli-
fies equation (4) in w™ o w™ p(z|z{™). Thus, the
weight at the current time is updated using the weight at the
previous time and evaluating the likelihood of the observa-
tion with respect to the hypothesis :CE”).

When only few particles have considerable weights,
tracking degenerates to this few particles for estimating
the posterior p(z¢|z1.¢). This issue is called degeneracy
problem and can be solved introducing a resampling step

[2]. When the estimate of effective sample size Neg =



W is under a threshold Np, the method resam-
n \Wy
ples the particles generating a new particle set with uniform

weights.

6.1 HJS Filter

The HJS approach [14] represents a theoretical grounded
compromise between dealing with a strict joint process [10]
and instantiating a single independent tracking filter for
each distinct object. Roughly speaking, HJS alternates a
separate modeling during the sampling step with a joint for-
mulation using a hybrid particle set in the dynamical and
observational steps.

The rule that permits the crossing over joint-separable
treatments is based on the following approximation (see
[14] for details):

p(xe|21.r)

Hp (@F|21:7) ©)

that is, the joint posterior could be approximated via prod-
uct of its marginal components (k indexes the objects). This
assumption enables us to sample the particles in a single
state space (thus requiring a linear proportionality between
the number of objects and the number of samples), and to
update the weights in the joint state space. The updating
exploits a joint dynamical model which builds the distribu-
tion p(x¢|x¢—1) (explaining how the system does evolve)
and a joint observational model that provides estimates for
the distribution p(z;|x;) (explaining how the observations
are related to the state of the system).

Both models take into account the interactions among
objects; in particular the joint dynamical model p(x;|x;—1)
accounts for physical interactions between the targets, thus
avoiding track coalescence of spatially close targets. The
joint observational model p(z:|x;) quantifies the likelihood
of the single measure z; given the state x;, considering
inter-objects occlusions.

The joint dynamical model is approximated in the fol-
lowing way:

K

p(xe|xi—1) H Pl o) 6)

where q(z¥|z¥ ) is the single target dynamical model, that
spread independently the particles of each target, and p(x;)
is a joint factor that models the interaction among the tar-
gets.

The PF dynamic process is split into two step: 1) ap-
plying the dynamic of the single target hypotheses, and 2)
evaluating jointly the interactions among the hypotheses of
all the targets. In particular, we model ¢(z¥|z¥ ) as a first
order autoregressive model adding a Gaussian zero-mean

noise. The joint factor p(x;) can be viewed as an exclu-
sion principle: two or more targets cannot occupy the same
volume at the same time. In [14], p(x;) is modeled with a
pairwise Markov Random Field (MRF). Inferring on a MRF
with Belief Propagation, the hypotheses that do not agree
with the exclusion principle have a low probability to exist.

The joint observational model relies on the representa-
tion of the targets, that here are constrained to be human
beings. Person representation assumes the human body in
three parts: head, torso, and legs as in [10]. For the sake
of clarity, we assume the body as a whole volumetric en-
tity, described by its position in the 3D plane, with a given
volume and appearance captured by HSV intensity values.
The joint observational model works by evaluating a sepa-
rate appearance score for each object, encoded by a distance
between the histograms of the model and the hypothesis (a
sample), involving also a joint reasoning captured by an oc-
clusion map.

The occlusion map is a 2D projection of the 3D scene
which focuses on the particular object under analysis, giv-
ing insight on what are the expected visible portions of that
object. This is obtained by exploiting the hybrid particles
set {xp};,\[:}g in an incremental visit procedure on the im-
age plane: the hypothesis nearest to the camera is evaluated
first, its presence determines an occluding cone in the scene,
where the confidence of the occlusion depends on the obser-
vational likelihood achieved. Particles farther in the scene
which fall in the cone of occlusion of other particles are
less considered in their observational likelihood computa-
tion. The process of map building is iterated as far as the
farthest particle in the scene and the observation model is
defined as:

fc, +bc
p(ze|xp) ox exp (—W) )

where fc,, is the foreground term, i.e., the likelihood that an
object matches the model considering the unoccluded parts,
and bc,,, the background term, accounts for the occluded
parts of an object. These terms are computed accounting
for the occlusion map, that deals with the partial occlusions
among different persons on the image plane. Moreover, in
order to improve the robustness and the reliability of the
method, we integrate the occlusion map and the foreground
image, derived from the background/foreground segmenta-
tion process discussed in Section 4.

7. Results

The testing session has been focused on the PETS dataset
[1], in order to compare and to certify the performances
of both approaches with public challenging data. In par-
ticular, we choose S2 dataset, using the first camera view
(“View_001") of the first sequence.



The objective is to track all of the persons (targets) in the
sequence with both methods in a monocular setup. In or-
der to give an evaluation and validation of the methods, the
sequence has been manually labeled generating the ground
truth? of the targets. The ground truth consists of: the iden-
tifier (ID) of each target, its 3D position on the ground
plane, and its 2D bounding box which is associated to a
specific view.

We prefer not to use background model provided by
PETS training dataset in order to simulate a real compu-
tation of the system. Our background modeling method ini-
tialization step needs 220 frames to create the first back-
ground model, thus people tracking starts from the frame
number 220 to the end of the sequence (795).

7.1 Segmentation Results

For the experiments, we set background modeling param-
eters as follows: number of samples Ng = 15, sampling
period P = 1.8 seconds, minimal cluster dimension D =2
and association threshold A = 4. Background subtraction
parameters are 7' =10 and W = 5.

The segmentation error e; for each frame ¢ is computed

as
|7 —nl

et =

)
n

where 7 is the number of detected people and n is the real
number of people in the scene. The average accuracy A for
a set of Ny frames is computed as

1 &
A= — (1—e) ©))
Ny ;
BS method | No. of frames | Accuracy |
without NPE 100 0.841
with NPE 100 0.949

Table 1: Segmentation accuracy.

The results are showed in Table 1, where two different
types of background subtraction (BS) are considered: with
and without NPE module. NPE allows to correct errors
when people are very close each other and when occlusions
occur. Qualitative results are shown in Fig. 3.

The algorithm performance in terms of frame per sec-
onds (fps) are shown in Table 2, for evaluating the real-time
performances of the background subtraction algorithm. The
first row shows the test on PETS 2009 dataset (recorded at
7 fps). Our system emulates PETS video acquisition set-
ting loading a new frame every 1/7 seconds, thus achiev-
ing PETS provided fps. Live acquisitions has been carried

2Publicly  available  at
~bazzani/PETS2009

http://profs.sci.univr.it/

out in order to evaluate real performances of the proposed
method (last rows in Table 2). The tests are sorted from
lower to higher resolution images obtaining an evaluation
that permits to discover the ideal resolution, for real-time
computation.

Video acquisition | Frame Dim. | FPS |

PETS 2009 768 x 576 7
Live 1 320 x 240 25
Live 2 640 x 480 14
Live 3 768 X 576 10

Table 2: Segmentation algorithm speed.

7.2 Tracking Results

An evaluation has been carried out on the image plane
in terms of: False Positives (FP), Multiple Objects (MO),
False Negatives (FN), Multiple Trackers (MT), and Track-
ing Success Rate (TSR), see [21] for further details. The
results, averaged over all the frames of the sequence and for
all the moving targets, are summarized in Table 3.

y FP [ MO | FN [ MT | TSR |
MHKF | 0.279 [ 0.009 | 0.203 | 0.212 | 0.624
HIS ] 0.086 | 0.007 | 0.279 | 0.042 | 0.712

Table 3: Tracking results comparison on PETS 2009
dataset: task S2, video L1, view 1.

HIS filter performs better than MHKF considering FP,
MO, MT, and TSR, because MHKF generates more than
one tracks for a single target. In this case, it is possible that
a target is tracked from more identifiers and, on the other
hand, it is possible that a target is not tracked. However,
the FN ratio is higher for HJS, motivated from the fact that
sometimes the tracking of an target is lost and it converges
toward another one or the clutter. The TSR gives us a gen-
eral value of the tracking reliability and it summarizes the
performances. It is clear from the results that HJS is more
reliable than MHKF.

In Fig. 4, we report some tracking results (the com-
plete sequence can be found at http://profs.sci.
univr.it/~bazzani/PETS2009), in order to evalu-
ate qualitatively the methods discussed in this paper. In par-
ticular, we show three frames of the task S2, video L1, view
1 from PETS 2009 dataset. First row shows the tracking
results regarding MHKF, whereas second row shows HJS
results.

From the experiments we find that drawbacks of MHKF
are: 1) targets are tracked with multiple tracks, leading to a
proliferation in the number of tracks; 2) after an occlusion



the target ID changes, i.e., a new track instance is created;
3) MHKEF tracking fails when people motion is non-linear.
Vice versa, HIS overcomes the problems of MHKEF: 1) only
one track is kept for each target, because the data associa-
tion is inherent in the particle filtering formulation; 2) after
an occlusion the target ID is kept, thanks to the integration
of the occlusion map into the observation model; 3) HIJS
can deal with non-linearity characterizing people motion.

However, HJS has some problems with complete occlu-
sion. In this case, the tracker cannot infer the position of
the target because of the lack of foreground observations
for the occluded target. Thus, tracking of a target fails in
case of long-term occlusions.

Integrating MHKF and HJS can lead to reduce erroneous
track associations. HJS can help MHKF in merging re-
dundant tracks belonging to the same target, reducing the
problem of track proliferation. MHKF can help HJS in re-
initialization after a track loss and in deleting track not cor-
responding to foreground observations.

8. Conclusions

In this work, two kinds of multi-target tracking approaches
have been presented: Multiple-Hypothesis Kalman filter
and Particle filter based (HJS). A comparison of these meth-
ods has been carried out analyzing a recent challenging
dataset (PETS 2009), and the results show the robustness
of both approaches. In particular, HIS performs better than
MHKF when occlusions occur keeping the identity of the
target after occlusion, while MHKF tends to generate a new
target ID.

In addition, a novel online background subtraction algo-
rithm has been proposed and investigated. Testing session
shows the real-time performances and the accuracy of the
algorithm in PETS datasets and live video acquisitions.

As future works, we intend to integrate both the tracking
methods in a single framework, in order to exploit advan-
tages minimizing drawbacks.
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Figure 3: Foreground images (moving objects in black) for frames 702, 716, and 736 of task S2, video L1, view 1

Figure 4: Tracking results for frames 702, 716, and 736 of task S2, video L1, view 1: first row shows MHKF and second row
show HIS filter.
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