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Abstract

We propose a novel attentional model for simultaneous object tracking and recog-
nition that is driven by gaze data. Motivated by theories of the human percep-
tual system, the model consists of two interacting pathways: ventral and dor-
sal. The ventral pathway models object appearance and classification using deep
(factored)-restricted Boltzmann machines. At each point in time, the observa-
tions consist of retinal images; with decaying resolution toward the periphery of
the gaze. The dorsal pathway models the location, orientation, scale and speed
of the attended object. The posterior distribution of these states is estimated with
particle filtering. Deeper in the dorsal pathway, we encounter an attentional mech-
anism that learns to control gazes so as to maximize different objectives. Here we
demonstrate the method when the objective is to minimize the uncertainty in the
posterior distribution of the states. The approach is modular (with each module
easily replaceable with more sophisticated algorithms), straightforward to imple-
ment, practically efficient, and works well in simple video sequences.

1 Introduction

Humans track and recognize objects effortlessly and efficiently, exploiting attentional mecha-
nisms [24, 6] to cope with a vast stream of data. In this paper, we use the human visual system
as inspiration to build a model for simultaneous object tracking and recognition from gaze data, as
shown in Figure 1. The proposed model also addresses the problem of gaze planning (i.e., where to
look in order to achieve some goal, such as minimizing position, speed or object label uncertainty).

The model consists of two interacting modules, ventral and dorsal, which are also known as the what
and where modules respectively. The dorsal pathway is in charge of state estimation and control. At
the lowest level, a particle filter [7] is used to estimate the states of the object under consideration,
including location, orientation, speed and scale. We make no attempt to implement such states with
neural architectures, but it seems clear that they could be encoded with grid cells [18] and retinotopic
maps as in V1 and the superior colliculus [25, 9]. At the higher level of the dorsal pathway, a policy
governing where to gaze next is learned with an online hedging algorithm [1]. This policy learning
step could be easily improved using other bandit approaches and Bayesian optimization [3, 4, 5].
The dorsal attentional mechanism is responsible for controlling saccades and, to a significant extent,
smooth pursuit [6].

The ventral pathway consists of two layers as shown in Figure 1; one for learning latent repre-
sentations and a second for object recognition. We use (factored)-restricted Boltzmann machines
(RBMs) [11, 23, 29], but autoencoders [28], sparse coding [21, 14], two-layer ICA [15] and con-
volutional architectures [17] could also be adopted in this module. At present, we pre-train the
appearance models.
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Figure 1: Graphical model. From the gaze data vt, the model infers the hidden features ht (that is, the
activation intensity of each receptive field) and the object class ct at time t. The location, size, speed and
orientation of the gaze patch is determined by the state xt. The actions at follow a randomized policy πt

that depends on the cumulative reward Rt−1. This particular reward is a function of the belief state bt =
p(xt|a1:t,h1:t), also known as the filtering distribution. Unlike typical commonly used partially observed
Markov decision models (POMDPs), the reward is a function of the beliefs. In this sense, the problem is
closer to one of sequential experimental design. Alternative reward and policy models, aimed at improving
classification, could be easily obtained by adding directed edges from ct to at and Rt. With more layers in the
ventral v−h−c pathway, other rewards and policies could be designed to implement higher-level attentional
strategies.

The proposed system can be motivated from different perspectives. First, starting with [12], many
particle filters have been proposed for image tracking, but these typically use simple observation
models such as B-splines [12] and color templates [19]. RBMs are more expressive models of
shape, and hence, we conjecture that they will play a useful role where simple appearance models
fail. Second, from a deep learning computational perspective, this work allows us to tackle large
images and video. The use of fixations synchronized with information about the state (e.g. loca-
tion and scale) of such fixations, eliminates the need to look at the entire image or video. Third,
the system is invariant to image transformations encoded in the state, such as location, scale and
orientation. Fourth, from a dynamic sensor network perspective, this paper presents a very sim-
ple, but efficient, novel way of deciding how to gather measurements dynamically. Lastly, in the
context of psychology, the proposed model realizes to some extent the functional architecture for
dynamic scene representation of [24]. The rate at which different attentional mechanisms develop in
newborns (including alertness, saccades and smooth pursuit, attention to object features and high-
level task driven attention) guided the design of the proposed approach and was a great source of
inspiration [6].

Recently, a dynamic RBM state space model was proposed in [27]. Both the implementation and
intention behind that proposal are different from the approach discussed here. To the best of our
knowledge, the approach presented here is the first successful attempt to combine dynamic state
estimation from gazes with online policy learning for gaze adaptation, using deep belief network
models of appearance. Many other dual-pathway architectures have been proposed in computa-
tional neuroscience, including [20, 22], but we believe ours has the advantage that it is very simple,
modular (with each module easily replaceable), easy to implement, suitable for large datasets and
easy to extend.
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2 Model specification

2.1 State-space model

The standard approach to image tracking is based on the formulation of Markovian, nonlinear, non-
Gaussian state-space models, which are solved with approximate Bayesian filtering techniques. In
this setting, the unobserved signal (object’s position, velocity, scale, orientation or discrete set of
operation) is denoted {xt ∈ X ; t ∈ N}. This signal has initial distribution p (x0) and transition
equation p (xt|xt−1,at−1)

1. Here at ∈ A denotes an action, at time t, defined on a discrete
state space of size |A| = K. The observations {ht ∈ H; t ∈ N∗}, are assumed to be conditionally
independent given the state process {xt; t ∈ N}. In summary, the state-space model is described by
the following distributions:

p (x0)

p (xt|xt−1,at−1) for t ≥ 1

p (ht|xt,at) for t ≥ 1,

where x0:t , {x0, ...,xt} and h1:t , {h1, ...,ht} represent the states and the observations up to
time t, respectively. For the transition model, we will adopt a classical autoregressive process. The
appearance model p (ht|xt,at) is slightly more involved and will be discussed in Section 2.3.

Our aim is to estimate recursively in time the posterior distribution p (x0:t|h1:t,a1:t) and its asso-
ciated features, including the marginal distribution p (xt|h1:t,a1:t) — known as the filtering distri-
bution or belief state. This distribution satisfies the following recurrence:

bt , p(xt|h1:t,a1:t) ∝ p(ht|xt,at)
∫
p(xt|xt−1,at−1)p(dxt−1|h1:t−1,a1:t−1).

Except for standard distributions (e.g. Gaussian or discrete), this recurrence is intractable.

2.2 Reward function and policy

To complete the specification of the model, we need to introduce the policy π(·) and an instan-
taneous reward function rt(·). The reward can be any desired behavior for the system, such as
maximizing classification accuracy, minimizing posterior uncertainty, or achieving a more abstract
goal. To ground the discussion, however, we focus on gathering observations so as to minimize the
uncertainty in the estimate of the filtering distribution: rt(bt) , u[p̃(xt|h1:t,a1:t)]. More specifi-
cally, as discussed later, this reward will correspond to the variance of the importance weights of the
particle filter approximation p̃(xt|h1:t,a1:t) of the belief state. In our current implementation, each
action is a different gaze location. The objective is to choose where to look so as to minimize the
uncertainty about the belief state.

We also need to introduce the cumulative reward of the control algorithm for each action:

RT (aT = k) =

T∑
t=1

rt(p(xt|h1:t,at = k,a1:t−1)).

The actions are distributed according to the following stochastic policy:

πt(at = k|Rt−1) =
exp(ηRt−1(at = k))∑K
j=1 exp(ηRt−1(at = j))

,

where η > 0 is a parameter. We have defined the policy in this way as it enables us to borrow
decision making algorithms from the online learning framework [1] with very little effort. Here,
we will adopt the hedge algorithm for full information games described in [1]. (This algorithm
has vanishing regret.) However, as mentioned in the introduction, one could adopt other bandit
techniques [4, 5], Bayesian optimization [3] or mirror descent [2] to extend the policy to continuous
action spaces and treat imperfect information games.

1For simplicity, we use xt to denote both the random variable and its realization, unless we feel it is nec-
essary to make this distinction explicit. Consequently, we express continuous probability distributions using
p (dxt) instead of Pr (Xt ∈ dxt) and discrete distributions using p (xt) instead of Pr (Xt = xt). If these dis-
tributions admit densities with respect to an underlying measure µ (usually counting or Lebesgue), we denote
these densities by p (xt). To make the material accessible to a wider audience, we shall allow for a slight abuse
of terminology by, sometimes, referring to p (xt) as a distribution.
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Figure 2: (a) Template with 9 gazes initialized automatically when motion is detected. (b) Foveal observation
corresponding to gaze G5 in the template. (c) The most active RBM filters for this observation.

2.3 Appearance model

We use (factored)-RBMs to model the appearance of objects and perform object classification us-
ing the gazes chosen by the control module. These undirected probabilistic graphical models are
governed by a Boltzmann distribution p(v,h|w) over the gaze data vt and the hidden features
ht ∈ {0, 1}nh . We assume that the receptive fields w, also known as RBM weights or filters,
have been trained beforehand. We also assume that readers are familiar with these models and, if
otherwise, refer them to [23, 26].

In image tracking, the observation model is often defined in terms of the distance of the observations
with respect to a template τ ,

p (ht|xt,at) ∝ e−d(h(xt,at),τ),

where d(·, ·) denotes a distance metric and τ an object template (for example, a color histogram or
spline). In this model, the observation h(xt,at) is a function of the current state hypothesis and the
selected action. The problem with this approach is eliciting a good template. Often color histograms
or splines are insufficient. For this reason, we will construct the templates with (factored)-RBMs as
follows. First, optical flow is used to detect new object candidates entering the visual scene. Second,
we assign a template to the detected object candidate, which consists of several gazes covering the
field of motion, as shown in Figure 2 for K = 9 gazes. The same figure also shows the typical
foveated observations (higher resolution in the center and lower in the periphery of the gaze) and
the receptive fields for these observations learned beforehand with an RBM. The control algorithm
will be used to learn which of the gazes in the template are more fruitful. That is, each “saccadic”
action will correspond to the selection of one of these gaze options. Finally, we define the likelihood
of each observation directly in terms of the distance of the hidden units of the RBM h(xt,at,vt) to
the hidden units of each template region h(x1,at = k,v1), k = 1 : K, initialized in the first frame.
That is,

p (ht|xt,at = k) ∝ e−d(h(xt,at=k,vt),h(x1,at=k,v1)).

The above template is static, but conceivably one could adapt it over time.

The appearance module also performs object recognition, classifying a gaze instance selected with
the gaze policy. The input of the classifier is the latent representation ht. To estimate the class
variable ct (Figure 1) over time, we accumulate the classification decisions at each time step. This
simple classifier ignores temporal coherence between gazes. A better strategy would be to perform
classification on a sequence of gazes, as recently demonstrated in [16].

3 Algorithm

Since the belief state cannot be computed analytically, we will adopt particle filtering to approx-
imate it. The algorithm is shown in Figure 3. We refer readers to [7] for a more in depth treat-
ment of these sequential Monte Carlo methods. Assume that at time t − 1 we have N � 1

particles (samples) {x(i)
0:t−1}Ni=1 distributed according to p (dx0:t−1|h1:t−1,a1:t−1). We can ap-

proximate this belief state with the following empirical distribution p̂ (dx0:t−1|h1:t−1,a1:t−1) ,
1
N

∑N
i=1 δx(i)

0:t−1
(dx0:t−1). Particle filters combine sequential importance sampling with a selec-
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1. Initialization, t = 0.

• For i = 1, ..., N , sample x
(i)
0 ∼ p (x0) , set t = 1, and initialize the template.

• Set R0(a0 = k) = 0 for k = 1, . . . ,K , where K is the number of gazes in the
template

2. Importance sampling step

• For i = 1, ..., N , sample x̃
(i)
t ∼ qt

(
dx

(i)
t

∣∣∣ x̃(i)
0:t−1,h1:t,a1:t

)
and set x̃

(i)
0:t =(

x
(i)
0:t−1, x̃

(i)
t

)
.

• For i = 1, ..., N , k = 1, . . . ,K, , evaluate the importance weights

w̃
(i),k
t ∝

p
(
ht|x̃(i)

t ,at = k
)
p
(
x̃
(i)
t |x̃

(i)
0:t−1,at−1

)
qt
(
x̃
(i)
t

∣∣∣ x̃(i)
0:t−1,h1:t,a1:t

) .

• Normalise the importance weights w(i),k
t =

w̃
(i),k
t∑N

j=1 w̃
(j),k
t

3. Gaze control step
• Update the policy

πt(at = k|Rt−1) =
exp(ηRt−1(at = k))∑K
j=1 exp(ηRt−1(at = j))

• Receive the rewards rt,k =
∑N

i=1

(
w

(i),k
t

)2
for k = 1, . . . ,K

• Set Rt(at = k) = Rt−1(at = k) + rt,k for k = 1, . . . ,K

• Sample action k? according to the policy πt(·).
• Set w(i)

t = w
(i),k?

t for i = 1, ..., N

4. Selection step

• Resample with replacement N particles
(
x
(i)
0:t; i = 1, . . . , N

)
from the set(

x̃
(i)
0:t; i = 1, . . . , N

)
according to the normalized importance weights w(i)

t .

• Set t← t+ 1 and go to step 2.

Figure 3: Particle filtering algorithm with gaze control.

tion scheme designed to obtain N new particles {x(i)
0:t}Ni=1 distributed approximately according to

p (dx0:t|h1:t,a1:t).

3.1 Importance sampling step

The joint distributions p (dx0:t−1|h1:t−1,a1:t−1) and p (dx0:t|h1:t,a1:t) are of different dimen-
sion. We first modify and extend the current paths x

(i)
0:t−1 to obtain new paths x̃

(i)
0:t using a

proposal kernel qt (dx̃0:t|x0:t−1,h1:t,a1:t) . As our goal is to design a sequential procedure,
we set qt (dx̃0:t|x0:t−1,h1:t,a1:t) = δx0:t−1 (dx̃0:t−1) qt (dx̃t| x̃0:t−1,h1:t,a1:t), that is x̃0:t =
(x0:t−1, x̃t). The aim of this kernel is to obtain new paths whose distribution qt (dx̃0:t|h1:t,a1:t) =
p (dx̃0:t−1|h1:t−1,a1:t−1) qt (dx̃t| x̃0:t−1,h1:t,a1:t) is as “close” as possible to p (dx̃0:t|h1:t,a1:t).
Since we cannot choose qt (dx̃0:t|h1:t,a1:t) = p (dx̃0:t|h1:t,a1:t) because this is the quantity we
are trying to approximate in the first place, it is necessary to weight the new particles so as to obtain
consistent estimates. We perform this “correction” with importance sampling, using the weights:

w̃t =
p (dx̃0:t|h1:t,a1:t)

qt (dx̃0:t|h1:t,a1:t)
= w̃t−1

p (ht|x̃t,at) p (dx̃t|x̃0:t−1,at−1)

qt (dx̃t| x̃0:t−1,h1:t,a1:t)
.

The choice of the transition prior as proposal distribution is by far the most common one. In this
case, the importance weights reduce to the expression for the likelihood. However, it is possible to
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construct better proposal distributions, which make use of more recent observations, using object
detectors [19], saliency maps [13], optical flow, and approximate filtering methods, as in the un-
scented particle filter. One could also incorporate strategies to manage data association and other
tracking related issues. We obviate these issues to focus instead on components of this project that
are more relevant to the deep learning community.

After normalizing the weights, w(i)
t =

w̃
(i)
t∑N

j=1 w̃
(j)
t

, we obtain the following estimate of the filtering

distribution:

p̃ (dx0:t|h1:t,a1:t) =

N∑
i=1

w
(i)
t δ

x̃
(i)
0:t

(dx0:t) .

3.2 Gaze control step

We treat the problem of choosing a gaze (from the template) with a portfolio allocation algorithm
called Hedge [8, 1]. Hedge is an algorithm that, at each time step t, updates the policy πt(at|Rt−1)
for each allowed action (see [1]). It then selects an action k? according to this policy as shown in
Figure 3. The immediate reward is defined as the variance of the normalized importance weights.
This choice is motivated by the fact that the (factored)-RBM likelihood is very peaked. It favors the
detection of the peak.

Note that we assumed a perfect information game. However, it is possible to only observe one of
the gazes at each time using the EXP3 algorithm from [1] or Bayesian optimization techniques [3].

3.3 Selection step

The aim of the selection is to obtain an “unweighted” approximate empirical distribution
p̂ (dx0:t|h1:t,a1:t) of the weighted measure p̃ (dx0:t|h1:t,a1:t). The basic idea is to discard the
samples with small weights and multiply those with large weights. The introduction of this key
step led to the first operational SMC method; see [7] for details of implementation of this black-box
routine.

4 Experiments

In this section, three experiments are carried out to evaluate quantitatively and qualitatively the pro-
posed approach. The first experiment provides comparisons to other control policies on a synthetic
dataset. The second experiment, on a similar synthetic dataset, demonstrates how the approach can
handle large variations in scale, occlusion and multiple targets. The final experiment is a demonstra-
tion on a real short hockey video. For the synthetic digit videos, we trained RBMs on the foveated
images, while for the hockey video we trained factored-RBMs [23].

The first experiment uses 10 video sequences (one for each digit) composed using the MNIST
dataset. Each sequence contains a moving digit, numbers in the background (to create occlusions)
and salt and pepper noise (30%). The objective is to track and recognize the moving number. The
gaze template was composed of K = 4 gazes, chosen so that gaze G1 was right at the center and
gaze G4 nearby. The other gazes where placed in the periphery. The intention behind this choice of
template was to evaluate whether hedge could learn where to look. The location of the template was
initialized with optical flow.

We compare the policy learning algorithm against algorithms with deterministic and random poli-
cies. The deterministic policy chooses each gaze in sequence and in a particular pre-specified order,
whereas the random policy selects a gaze uniformly at random. We adopted the Bhattacharyya dis-
tance in the specification of the observation model. A multi-class logistic regression model was
trained to map the hidden units to the 10 digit classes. We used the transition prior as proposal for
the particle filter.

Table 1 reports the comparison results. Tracking accuracy was measured in terms of the mean and
variance (in brackets) over time of the distance between the target ground truth and the estimate;
measured in pixels. The analysis highlights that the error of the learned policy is always below the
error of the other policies. In most of the experiments, the tracker fails when an occlusion occurs
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for the deterministic and the random policies, while the learned policy is successful. This is very
clear in the videos provided as additional material at: http://www.youtube.com/user/
anonymousML (We strongly recommend that readers look at these videos). The loss of track
for the simple policies is mirrored by the high variance results in Table 1 (experiments 0, 1, 4, and
so on). The average mean and variance errors (last column of Table 1) make clear that the proposed
strategy for learning a gaze policy can be of enormous benefit.

Table 1: Tracking error on several video sequences using different policies for gaze selection.
0 1 2 3 4 5 6 7 8 9 Avg.

Learned
policy

5.65
(0.58)

2.82
(1.06)

1.58
(1.22)

2.31
(0.40)

3.78
(0.77)

1.92
(4.03)

1.96
(0.48)

4.82
(2.20)

3.36
(13.50)

1.80
(0.62)

3.00
(2.48)

Deterministic
policy

76.88
(1768.00)

34.83
(957.93)

1.92
(2.08)

3.60
(5.07)

55.90
(1988.21)

3.17
(10.83)

2.63
(2.48)

50.64
(4074.73)

52.54
(1364.43)

100.12
(4092.16)

38.22
(1426.59)

Random
policy

51.90
(3936.27)

31.07
(1956.23)

1.76
(1.62)

3.59
(9.07)

88.78
(8516.38)

64.60
(5886.32)

79.28
(4036.75)

93.00
(4034.64)

93.63
(3874.49)

98.17
(6030.83)

60.58
(3828.26)

Figure 4 provides some anecdotal evidence for the policy learning algorithm, but we again encour-
age readers to watch the videos to better appreciate the behavior of the algorithms. The top sequence
shows the position of the target (in green) and the particle filter estimate of its location (in red) over
time. The middle sequence illustrates how the policy changes over time. In particular, it demon-
strates that hedge can effectively learn where to look in order to improve tracking performance.
This improvement in tracking also results in improvements in classification (see online videos). The
classification results over time are shown in the third row.
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Figure 4: Tracking and classification accuracy results with the learned policy. First row: position of the target
in green and tracker estimate in red over time. Second row: policy distribution over the four gazes; hedge
clearly converges to the most reasonable policy. Third row: cumulative class distribution for recognition.

The second experiment addresses a similar video sequence, but tracking multiple targets. The image
scale of each target changes over time, so the algorithm has to be invariant with respect to these scale
transformations. In this case, we used a mixture proposal distribution consisting of motion detectors
and the transition prior. We also tested a saliency proposal but found it to be less effective than the
motion detectors for this dataset. Figure 5 (top) shows some of the video frames and tracks. The
accompanying online video allows one to better appreciate the performance of the algorithm in the
presence of occlusions. The final experiment was to track a hockey player in an actual video. The
results are shown in Figure 5 (bottom) and the accompanying video.

5 Conclusions and future work

We have proposed a decision-theoretic probabilistic graphical model for joint classification, tracking
and planning. This model is motivated by the dual-pathway (ventral and dorsal) architecture in

7



Figure 5: (Top) Multi-target tracking with occlusions and changes in scale on a synthetic video. (Bottom)
Tracking a player in a hockey video.

neuroscience. The experiments demonstrate the significant potential of this approach. This can be
better appreciated by watching the online videos.

There are many routes for further exploration. First, in this work we pre-trained the (factored)-
RBMs. However, existing particle filtering and stochastic optimization algorithms could be used
to train the RBMs online. Following the same methodology, we should also be able to adapt and
improve the target templates and proposal distributions over time. The theoretical properties of these
algorithms, in conjunction with policy learning, should be established.

Second, we used the activations of RBMs for a single gaze to train a second layer logistic classifier
for digits, but this does not give the best recognition performance and does not exploit the correlation
between gazes over time. However, in future work we plan to accumulate and integrate sequences of
gazes to improve the classification performance and to emulate the learning of object representations
in humans, as recently shown in [16].

Third, deployment to more complex video sequences will require more careful and thoughtful de-
sign of the proposal distributions, transition distributions, control algorithms, continuous template
models, data-association and motion analysis modules. Fortunately, many of the solutions to these
problems have already been engineered in the computer vision, tracking and online learning com-
munities. Admittedly, much work remains to be done.

Saliency maps are ubiquitous in visual attention studies. Here, we simply used standard saliency
tools and motion flow in the construction of the proposal distributions for particle filtering. There
might be better ways to exploit the saliency maps, as neurophysiological experiments seem to sug-
gest [10].

One of the most interesting avenues for future work is the construction of more abstract attentional
strategies. In this work, we focused on attending to regions of the visual field, but clearly one could
attend to subsets of receptive fields or objects in the deep appearance model.
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