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Abstract

Group detection represents an emerging Computer Vision research topic motivated
by the increasing interest in modelling the social behaviour of people. This paper presents
an unsupervised method for group detection which is based on an online inference pro-
cess over Dirichlet Process Mixture Models. Formally, groups are modelled as compon-
ents of an infinite mixture and individuals are seen as observations generated from them.
The proposed sequential variational framework allows to perform inference in real-time,
while social constraints based on proxemics rules ensure the production of proper group
hypotheses consistent with human perception. The results obtained on several data-
sets compare favourably with state-of-the-art approaches, setting the best performance
in some of them.

1 Introduction

Social interactions are essential in our daily activities: people organise themselves in groups
and share views, opinions, thoughts. Through the observations of social interactions many
behavioural traits of the interlocutors can be inferred, as dominance or extroversion, or social
characteristics of the interplay can be estimated [26]. For this reason, automatic modelling
of interactional exchanges has become an active research topic in Computer Vision over
the last few years, especially in video surveillance. The first step towards the analysis of
social behaviour and the understanding of social interactions involves the identification of
groups of people. Finding groups is very important to constrain the dynamics of people
in tracking applications [20, 21, 28], in people recognition from still images [27], and in
activity recognition tasks [7]. A group can be defined as several people who “interact on
a regular basis, have affective ties with one another, share a common frame of reference,
and are behavioural interdependent” [17]. For our (computer vision oriented) purposes, with
group we mean a collection of (interacting) people which are spatially close, moving in the
same direction or standing in a given local area.

This paper focuses on the automatic discovery of groups of people from videos in real
surveillance scenarios. To this end, we employ a Dirichlet Process Mixture Model (DPMM)
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[2] and propose an online inference algorithm to perform unsupervised learning. Specifically,
groups are represented as components of a mixture model, and individuals are seen as obser-
vations generated from them. This model operates in a feature space defined by the output
of a tracker (i.e., the position and velocity of each individual at each time step) and embeds
a “social” constraint driven by proxemics rules introduced by Hall [11]. Such constraint is
based on the observation that the area shared by interactants is partitioned according to the
so-called social distances, i.e. ranges of distances typically characterising social interactions.
Such constraint allows to discard unlikely grouping configurations where the subjects are too
far away from each other.

The proposed method has several desirable properties. First of all, it inherits all the ad-
vantages of the DPMMs, i.e. it deals with unlabelled data and it does not require prior know-
ledge about the number of groups (mixture components) that are to be found in a scene. Our
method automatically adapts the number of groups to the observed data, coping with split,
merge, initialization and removal phenomena, that characterise the high structural variabil-
ity of groups. Another major advantage of our method is that it exploits an online inference
strategy to update the parameters of the model. This is possible because group configurations
evolve smoothly, so that the probabilistic model estimated at one time step can act as prior
knowledge for the following one. This is accomplished by fitting the probabilistic model via
sequential single-iteration variational inference in order to obtain the approximate posterior
at each frame, which is subsequently used as a prior for the next frame (Fig. 1(b)). The
employed Bayesian nonparametric approach demonstrated good flexibility and robustness,
showing also real-time detection capabilities, up to about 42 fps (bounded by the perform-
ance of the people detection algorithm), using only position and velocity of people as a the
feature representation.

In the next section the state of the art about group detection is outlined. Section 3 then
presents the proposed approach. An extensive experimentation on public datasets is reported
in Section 4, also providing critical comparative performance and conclusive remarks.

2 Related Work

One of the first papers showing interest in group modelling is the seminal work in computer
animation by Reynolds [23]. He proposed a model that simulates the complex motion of
birds (individuals) and flocks of birds (groups). Advanced techniques more specific for hu-
man motion [14] have been developed afterwards. One of the most used dynamical model is
the Social Force Model (SFM) [12] that simulates the individuals in crowd as a gas-kinetic
phenomenon, exploiting the concept of force from physics. Later, this model has been ex-
tended for dealing with groups [6]. Sochman and Hogg [25], on the other hand, propose
a new agglomerative clustering method for group detection by inverting the SFM to infer
its hidden parameters given tracking observations. Similarly, Ge et al. [10] use agglomerat-
ive clustering to group together tracking trajectories gathered in a time-window with fixed
length. Pellegrini et al. [21] present a conditional random field to jointly estimate groups
and the trajectory of individuals. Inference for this model is however too slow, making it
unsuitable to applications where speed is critically important.

Yamaguchi et al. [28] propose an energy-based model to deal with group dynamics and
prediction of destination in order to have a better estimate of the trajectories. Groups are
defined as pairwise links among individuals. Pairwise features (e.g., distance between two
individuals) are fed into an SVM that predicts the group and non-group state of each pair of
subjects. Jacques et al. [13] define a Voronoi diagram on the position of the individuals at
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each frame, where the personal space is the area of the corresponding Voronoi polygon. A
group is so heuristically defined as a set of adjacent (below a certain distance) polygons. The
advantage of our approach with respect to [13, 28] is that it assumes that interactions depend
on all members of the group not only on pairwise interactions.

Among the works addressing the analysis of group behaviour, it is interesting to highlight
the differences between 2 classes of methods, i.e., those considering only positional features
at each time step [13, 21] (e.g., the ground floor position), and those processing visual data
over a time-window [3, 10, 25, 28] (e.g., exploiting trajectories). The former provides the
results at each time frame with no delay. They are usually faster because the single-frame
output of standard detection/tracking algorithms is directly processed. The latter class of
methods uses additional cues extracted from the images and/or trajectories, typically applied
on top of detection/tracking results. Although considering a set of frames in a time window
can make the chosen descriptors more robust, such information can often be noisy and un-
reliable, eventually affecting the performance of group detection, besides being more time
consuming. For instance, in semi-stationary scenarios where people gather and talk, the
head orientation is used [3, 8] to detect interactions. Cristani et al. [8] present a generalized
Hough-voting strategy to estimate the F-formations [15], which are specific spatial config-
urations groups may assume. Bazzani et al. [3] introduce the inter-relation pattern matrix
that condenses the pairwise relations between individuals, assuming the group relation to be
transitive. The above techniques have two main drawbacks: the visual cues are not always
available (because of low resolution, for example) and the assumption that head orientation
gives the focus of attention of the person is not always valid. Moreover, estimating head
orientation is still an issue in real, e.g., low resolution image, conditions.

Another distinction of the group detector is due to the nature of the learning method that
is used: supervised or unsupervised. Supervised methods are characterised by the use of
classifiers [28] and/or heuristics [3, 8, 12, 13] inherited from the application (e.g., consid-
ering social psychology findings). The drawbacks of those techniques are the need of often
demanding training phases and annotated data sets. Conversely, unsupervised methods ana-
lyse data directly in order to extract recurrent patterns exploiting the temporal redundancy
of the group dynamics [4, 10]. Since almost no information is a-priori given, the latter ap-
proaches are more difficult to tackle, but the inherently high variability of the group detection
problem and the lack of reliably annotated data sets on which to build our classifiers, make
unsupervised methods the best choice for dealing with such kind of applications.

In the end, the proposed method has several novel characteristics which differentiates
it from the state of the art. First of all, it only uses positional and velocity features at each
time step, which are processed by an unsupervised online inference strategy. Such procedure
also takes benefit from the use of proxemics cues, which validate and corroborate groups’
hypotheses in a socially consistent way. Avoiding supervised learning strategies with their
extensive training phases, using only low-level descriptors, and performing online inference,
our method has unique features in the growing field of group behaviour analysis methods.

3 The Proposed Model

Modelling a set of groups can be seen as modelling a set of components of a mixture model
living in an appropriate feature space. From this point of view, groups are seen as compon-
ents and individuals are observations (or samples) drawn from them. Bayesian Nonpara-
metrics, and specifically Dirichlet Process Mixture Models (DPMMs) [2] are particularly
well suited for this task because they can represent mixture distributions with an unbounded
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Figure 1: Graphical model representing the random variables and the parameters at time ¢.

number of components where the complexity of the model (i.e. the number of components)
adapts to the observed data.

‘While the standard formulation of a DPMM considered in [5] handles observations that
do not change over time, we propose a generalisation of their variational framework which
circumvents some of the limitations of inference in Bayesian Nonparametric models. First of
all our method allows to take into account the temporal evolution of the data without resorting
to dynamical models [1] whose inference algorithms are affected by heavy computational
loads. Secondly the proposed inference mechanism allows to produce results in real-time
which is paramount for group detection in video sequences.

The proposed method relies on sequential variational inference that exploits the tem-
poral correlation across consecutive frames to refine the detection of groups exploiting the
evolution of the observations (Sec.3.1).

In addition, the framework is customised for dealing with people and groups, by taking
into account proxemics notions. This bounds the maximal distance that separates two people
in the same group, excluding grouping hypotheses with individuals which are too far away
from one another (Sec.3.2).

3.1 Mathematical Formulation

Let us suppose that at time ¢ we have N; detected people; each subject is represented as a
point X, ; = [x,y, 0, p], where x and y represent the ground-floor position of the person, 6 is
the heading angle and p the velocity module. Each individual is interpreted as an observed
sample coming from one of the infinitely many groups (component k).

Besides the parameters defining its distribution, each component has an associated prob-
ability mass depending on the parameters of the stick-breaking construction [24] used to
model the Dirichlet Process prior [9]. A stick-breaking construction is a constructive process
generating an infinite set of non-negative numbers summing to 1 by sequentially sampling
from a series of Beta distributions. The obtained sequence can be interpreted as the mixing
coefficients of a set of components defining a mixture model.

The graphical model associated to the described generative process is shown in Fig-
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ure 1(a) where, at time step ¢, we have N, points and

Vi Misktr Vs ~ Beta (Vikr, Voger) (D
Znt{v14:V2,5- -} ~ Discrete (7 (v;)) ()
Ay |By s, ar; ~ Wishart (Bkﬁtvakﬁt) 3)

. ~1
Mkt micss By Ay ~ Gaussian <mk7tv (BrsAxy) ) “)
Xnt|Zns ~ Gaussian (/.LZ,”,A;D )

where X, represents the n'" data point, Z, is an assignment variable relating each data point
to the mixing components, V; and the pair (i, A;) represent the k' mixture component in
the stick-breaking construction [24] with (1, Ay) representing the location of the component
in the parameter space and V; defining the mixing proportions.

Among the parameters of the model (those represented without any circle in the graph-
ical model of Figure 1(a)) y» deserves special attention. The prior value associated to this
parameter is ¢ and is directly linked to the probability of generating new components (i.e.
new groups) in the DPMM [5]. The effect of this free parameter on the final results will be
analysed in Section 4.

One of the main requirements for video analysis algorithms is speed. Since people de-
scribe smooth trajectories when walking, the group configuration at each frame has strong
correlation with that of the following frame and could be used as a prior belief for it. Start-
ing from this consideration, a sequential variational inference framework has been derived
to perform fast inference for group detection through DPMMs. This framework builds upon
ideas by Neal and Hinton [19] and on the work by Blei and Jordan [5]. To introduce the least
possible computational burden, single-iteration variational updates are performed on each
frame and the obtained approximate posterior over the mixture model is used as a prior for
the grouping configuration in the following frame. This is achieved by sequentially updating
the parameters of the model (y1, 12, a, B, m, ) (see Figure 1(a)) estimated at time z — 1 (prior
for time ¢) using the data observed at time ¢ as shown in Figure 1(b). Previous studies on the
performance of online updates of parameters (such as online EM [18]) showed how these
procedures can obtain good results, sometimes even better than the batch counterparts [18].

The sequential variational inference updates have been derived starting form the mean-
field algorithm proposed by Blei and Jordan [5] and that reported by Penny [22].

As proposed by Blei and Jordan [5], mean field variational inference can be formulated
using a family of variational distributions over 6 = {v,, Az} based on a truncated stick
breaking construction with truncation level K

K—1 K N
q(0) =TT an o) [19a (- A%) T T 96, (20) (6)
k=1 k=1 =l

In the formula above, n indexes the data points, k indexes the mixture components, gy, ~
Beta (Yik, Vk)» 4v, (Mi, Ax) follows a Gaussian-Wishart model parametrised by

T = {m, B, Bk, ax} such that gz (e, Ax) ~ N (/Jk|mk7 (5k1\k)_1) W (Ay|By, ay) and
q¢,(zn) ~ Discrete(¢,). The product over the gy, stops at component K — 1 since the last
component absorbs all the residual probability mass of the stick-breaking construction and
hence gy, (vx) =1[5].

Variational Bayes inference takes the form of an Expectation-Maximisation algorithm and
can be divided in E-step and M-step. In the E-step the probability ¢* of each of the N points
to belong to each of the K components is computed (see Supplementary Material for details).
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Once all (]),’f have been computed, the parameters of the distributions are updated in the
M-step. After defining the following variables

N N
_ _ 1
Nee =Y, o fee =5 X, 0" s (7a.b)
n=1 kit n=1
_ 1 X kit _ N
Zk,z = N (o (xn,t - /Jk,r) (xn,t - /«lk,z) (3
k,t n=1

the variational Bayes update formulas are used to update the parameters. The computed
parameters define the posterior distributions at time-step ¢ and will be used as prior for the
following time-step from which the 7 + 1 pedix is derived. In particular, the parameters
Yi:-2+1 and .. ;1 of the Beta distribution defining the mixing proportions are updated as

Yoks +Xi Njy ifk<K

o ifk=K (Ga.b)

Yiskg+1 = Viskyr + Nis Vikp+1 = {

with a being the scaling constant of the Dirichlet Process prior at time-step 0 [5]. The

parameters of the distribution of the mean of each component of the mixture are updated as

ng 'ﬁkJ + ﬁk,t Myt
Nis + By

Finally, the parameters of the distribution of the precision matrix of each component are
updated according to

My ] = Bicr+1 = Nis + Brs (10a,b)

Nk,t ’ﬁk,f (,ak.t_* mk,t) (,L_lk,t - mk.t)/
Nit + By

After the parameter initialisation, the presented variational EM procedure can be applied to
the incoming data streams to perform inference over time.

To conclude the variational update, the components are sorted by decreasing number of
assigned points.

The proposed method has two main advantages. First of all, inference is extremely fast
and computational times are compatible with real time processing. Secondly, the spatial
dynamics of the groups is not explicitly modelled, and this is especially valuable in scenarios
where groups repeatedly split and merge.

After each update of the parameters, the model provides the probability each person has
to belong to each of the groups. This depends on two different contributions. The first
is the probability of the observation (person’s position and velocity) under each Gaussian
component which directly depends on the parameters m, 3, B and a. The second is the
probability of the Gaussian component itself which depends on the y; and 9> parameters.
People are assigned to groups performing hard assignment on the basis of the highest of
these probabilities.

g1 =N +ars  Brypr =Nig -y, +

+B, (llab)

3.2 Social Constraint

Our clustering approach can be customized for managing individuals by considering ele-
ments of proxemics, which investigates how people use and organise the space they share
with others. As is known from social psychology, people tend to unconsciously organise the
space around them in concentric zones corresponding to different degrees of intimacy [11].
The idea is that the shorter the distance between two people, the higher the degree of intim-
acy. This analysis allows to define a limit distance, beyond which two individuals can be
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ETH Hotel ZaraOl Zara02 Students003
People 360 390 148 204 434
Groups 74 59 45 58 109
2-people groups 50 (67.57%) 55(93.22%) 36 (80.00%) 52 (89.66%) 88 (80.73%)
3-people groups 13 (17.57%) 3 ( 5.09%) 7 (15.56%) 6(10.34%) 13 (11.93%)
>4-people groups 11 (14.86%) 1( 1.69%) 2 ( 4.44%) - 8 ( 7.34%)

Table 1: Statistics of the considered sequences.

considered not to be interacting with high probability. Recent studies define this distance as
r = 2 meters [26], called social space. This notion helps us to refine the group hypotheses
generated by our approach. When one of the detected groups does not fulfil the social con-
straint, i.e., the members of the group are farther than r from each other, the corresponding
mixture component is re-sampled. When this happens, all the parameters of such compon-
ent (see Fig.1(a)) are re-initialised and the component is centred on the person which is less
probable under the current mixture model by setting the mean to the position and speed of
this person. This resampling procedure allows to propose new groups in areas badly approx-
imated by the current mixture model.

4 Experiments and Discussion

Evaluating the performance of group detection algorithms is a hard task because of the lack
of a commonly accepted evaluation protocol; for this reason, when comparing with other
approaches, we adopt their metrics. In particular, we considered as competitors very re-
cent state-of-the-art approaches [4, 28], focusing on heterogeneous benchmarks [16, 20]. In
addition, we tested how the social constraint affects the performance of our approach.

Datasets. Two public benchmarks for group detection have been considered: the BIWI
dataset [20], containing the eth and hotel sequences, and the Crowd by Example dataset
[16], containing the zara0l, zara02, students003 sequences. Table 1 summarizes
the statistics of each sequence as reported in the ground truth provided by Yamaguchi et al.
[28]. Almost all the sequences present a high percentage of binary groups, while eth gives
a wider coverage to groups of different size and represents a more balanced situation.

Evaluation Metrics. Our approach is compared with the pairwise model of [28], and the
group detection and tracking model of [4]. In the comparison we used both the metric and
the grouping ground truth presented in those works. In particular, we use the precision and
recall defined over the pairwise relations as in [28], and the /-False Positive rate (1-FP), 1-
False Negative rate (1-FN) and Group Detection Success Rate (GDSR) averaged over each
time step as in [4] (see the respective papers for the details on the metrics).

Results. We consider first the work of Yamaguchi et al. [28]; it is worth noting that their
approach produces a unique relation matrix that, at the entry i, j, tells if subjects i and j have
been detected as a group during the sequence. As consequence, their evaluation protocol
aims at checking the similarity of the estimated relation matrix with the ground truth one.
On the contrary, the proposed method gives a grouping configuration for each frame. In order
to perform comparison, the results for each time step have to be merged in a single matrix.
To this end, pairwise connections between two people are defined whenever they belonged
to the same group for a certain fraction of of their tracks. Please note, such fraction is not a
parameter of our model, and has merely been introduced to perform comparison with [28].
For this reason, Precision-Recall curves have been computed varying this parameter between
O and 1. Figure 2 shows the curves obtained on the 5 sequences with and without introducing
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Figure 2: Precision-Recall curves with and without considering the social constraint + com-
parison with Yamaguchi et al. [28].

the social constraint (SC) in the model. The values for Precision and Recall reported in Table
3 of [28] (first column) are shown as dashed lines.

By visual inspection of Figure 2 some important facts can be observed. First of all,
introducing the social constraint in the model leads to considerably better results. This proves
the importance of including a mechanism guiding the inference over groups based on theories
coming from social psychology.

When ignoring the social constraint, moreover, the point representing the results by
Yamaguchi et al. [28] is always above the Precision-Recall curve by large margin.

After the introduction of the social constraint, on the other hand, such point is below
the Precision-Recall curve obtained by the proposed method for all the sequences except for
hotel. In order to better evaluate the extent of improvement, the results reported in [28]
are annotated in Figure 2 along with the points of the Precision-Recall curve having closest
Precision and closest Recall with respect to the benchmark method.

The worse performance on hotel is due to the fact that the sequence is extremely favor-
able for methods specifically designed to detect pairwise relations (rather than groups of any
size) like [28]. The ground truth for this sequence, in fact, has a wide majority of couples of
individuals (see Table 1)

In order to better assess the quality of the group detections, the method has been eval-
uated on the basis of the metrics proposed in [4] which explicitly consider the concept of
group rather than decomposing it in a series of pairwise relations. As previously introduced,
the eth sequence is the one which presents a more complete coverage of group sizes and
hence is more appropriate to evaluate the performance of group detectors on diverse grouping
configurations.
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Figure 3: Comparison with Bazzani et al. [4].

We started by analysing the performance of the model while varying o which is the free
parameter of the model and is directly linked to the probability of creating new groups. In
order to find an appropriate value, a performance analysis has been made varying & between
1 and 20. The curves for 1-FP, 1-FN and GDSR obtained varying « are shown in Figure 3(a).
The performed analysis highlighted that the GDSR shows a peak at & = 2 and in correspond-
ence to that value both 1-FP and 1-FN compare favorably to the results obtained by [4]. As a
result, the free parameter « has been set to 2 for all the experiments presented in this section.
The results of the comparison with [4] on the et h sequence are reported in Figure 3(b). The
proposed method outperforms the benchmark on the eth sequence for all the considered
metrics, proving the efficacy of the proposed approach in detecting groups of different size.

Figure 4 shows the qualitative results on eth (first row), hotel (second row), and
zara01l (last row). First of all, it is worth noticing that groups (in orange) are correctly
estimated when compared with the ground truth (in green), even in the most challenging
cases where groups are very close to each other (for example, frame 5148 of eth and frame
1753 of zara01). The method is also able to deal with a varying number of groups in the
scene (from O to 4 groups in the figure) and with multiple individuals walking alone (frame
7868 of eth). An example of false negative is reported in frame 2876 of hotel. As can be
seen by later frames (from 2904 to 3424) the model corrects the false negative by detecting
the group. This happens because a new component is associated to the group and gains more
importance over time being supported by the observed data for several subsequent frames.
An example of false positive is reported in frame 41 of zara01. Even in this case, the model
corrects the error by exploiting both the evidence coming from later frames and employing
the social constraint.

All the sequences have been processed with a Matlab implementation on a Xeon E5620
2.4 GHz with 12 GB RAM. Results are produced in real-time up to 42 fps when starting
from the output of a people detection algorithm.

Discussion. In this paper, we presented an approach aimed at detecting group formations
in video sequences, where the pedestrian have been detected beforehand. The approach is
based on Dirichlet Process Mixtures, whose inference has been sped up through a sequential
variational scheme. The approach compares favourably with the nowadays state-of-the-art
approaches, setting the best performance on some datasets. It is worth noting that our method
works online and with real-time performance, while all the other approaches are based on
batch processing. This promotes its usage in many real-world commercial application scen-
arios, such as video surveillance.
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Figure 4: Qualitative results on eth (first row), hotel (second row), and zara0O1l (last
row). The ground truth position of individuals and groups are shown with green circles
and segments, respectively. The estimated groups are depicted as orange convex hulls (best
viewed in colors).
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